Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 175, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654248

RESUMO

BACKGROUND: Two isoforms of Phosphoinositide 3-kinase (PI3K), p110γ and p110δ, are predominantly expressed in leukocytes and represent attractive therapeutic targets for the treatment of allergic asthma. The study aim was to assess the impact of administration of an inhaled PI3Kγδ inhibitor (AZD8154) in a rat model of asthma. METHODS: Firstly, we checked that the tool compound, AZD8154, inhibited rat PI3K γ & δ kinases using rat cell-based assays. Subsequently, a time-course study was conducted in a rat model of asthma to assess PI3K activity in the lung and how it is temporally associated with other key transcription pathways and asthma like features of the model. Finally, the impact on lung dosed AZD8154 on target engagement, pathway specificity, airway inflammation and lung function changes was assessed. RESULTS: Data showed that AZD8154 could inhibit rat PI3K γ & δ isoforms and, in a rat model of allergic asthma the PI3K pathway was activated in the lung. Intratracheal administration of AZD8154 caused a dose related suppression PI3K pathway activation (reduction in pAkt) and unlike after budesonide treatment, STAT and NF-κB pathways were not affected by AZD8154. The suppression of the PI3K pathway led to a marked inhibition of airway inflammation and reduction in changes in lung function. CONCLUSION: These data show that a dual PI3Kγδ inhibitor suppress key features of disease in a rat model of asthma to a similar degree as budesonide and indicate that dual PI3Kγδ inhibition may be an effective treatment for people suffering from allergic asthma.


Assuntos
Asma , Modelos Animais de Doenças , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Ratos , Masculino , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Ratos Sprague-Dawley , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/enzimologia , Relação Dose-Resposta a Droga , Inibidores de Proteínas Quinases/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Antiasmáticos/farmacologia , Ovalbumina/toxicidade
2.
Drug Des Devel Ther ; 16: 2901-2917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36068788

RESUMO

Purpose: Janus kinase 1 (JAK1) is implicated in multiple inflammatory pathways that are critical for the pathogenesis of asthma, including the interleukin (IL)-4, IL-5, IL-13, and thymic stromal lymphopoietin cytokine signaling pathways, which have previously been targeted to treat allergic asthma. Here, we describe the development of AZD0449 and AZD4604, two novel and highly selective JAK1 inhibitors with promising properties for inhalation. Methods: The effects of AZD0449 and AZD4604 in JAK1 signaling pathways were assessed by measuring phosphorylation of signal transducer and activator of transcription (STAT) proteins and chemokine release using immunoassays of whole blood from healthy human volunteers and rats. Pharmacokinetic studies performed on rats evaluated AZD0449 at a lung deposited dose of 52 µg/kg and AZD4604 at 30 µg/kg. The efficacy of AZD0449 and AZD4604 was assessed by evaluating lung inflammation (cell count and cytokine levels) and the late asthmatic response (average enhanced pause [Penh]). Results: Both compounds inhibited JAK1-dependent cytokine signaling pathways in a dose-dependent manner in human and rat leukocytes. After intratracheal administration in rats, both compounds exhibited low systemic exposures and medium-to-long terminal lung half-lives (AZD0449, 34 hours; AZD4604, 5 hours). Both compounds inhibited STAT3 and STAT5 phosphorylation in lung tissue from ovalbumin (OVA)-challenged rats. AZD0449 and AZD4604 also inhibited eosinophilia in the lung and reduced the late asthmatic response, measured as Penh in the OVA rat model. Conclusion: AZD0449 and AZD4604 show potential as inhibitors of signaling pathways involved in asthmatic immune responses, with target engagement demonstrated locally in the lung. These findings support the clinical development of AZD0449 and AZD4604 for the treatment of patients with asthma.


Assuntos
Asma , Inibidores de Janus Quinases , Animais , Asma/metabolismo , Citocinas/metabolismo , Humanos , Janus Quinase 1/metabolismo , Inibidores de Janus Quinases/farmacologia , Pulmão/metabolismo , Ovalbumina , Ratos , Transdução de Sinais
3.
J Allergy Clin Immunol ; 149(4): 1270-1280, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34678326

RESUMO

BACKGROUND: Obesity is a risk factor for asthma, and obese asthmatic individuals are more likely to have severe, steroid-insensitive disease. How obesity affects the pathogenesis and severity of asthma is poorly understood. Roles for increased inflammasome-mediated neutrophilic responses, type 2 immunity, and eosinophilic inflammation have been described. OBJECTIVE: We investigated how obesity affects the pathogenesis and severity of asthma and identified effective therapies for obesity-associated disease. METHODS: We assessed associations between body mass index and inflammasome responses with type 2 (T2) immune responses in the sputum of 25 subjects with asthma. Functional roles for NLR family, pyrin domain-containing (NLRP) 3 inflammasome and T2 cytokine responses in driving key features of disease were examined in experimental high-fat diet-induced obesity and asthma. RESULTS: Body mass index and inflammasome responses positively correlated with increased IL-5 and IL-13 expression as well as C-C chemokine receptor type 3 expression in the sputum of subjects with asthma. High-fat diet-induced obesity resulted in steroid-insensitive airway hyperresponsiveness in both the presence and absence of experimental asthma. High-fat diet-induced obesity was also associated with increased NLRP3 inflammasome responses and eosinophilic inflammation in airway tissue, but not lumen, in experimental asthma. Inhibition of NLRP3 inflammasome responses reduced steroid-insensitive airway hyperresponsiveness but had no effect on IL-5 or IL-13 responses in experimental asthma. Depletion of IL-5 and IL-13 reduced obesity-induced NLRP3 inflammasome responses and steroid-insensitive airway hyperresponsiveness in experimental asthma. CONCLUSION: We found a relationship between T2 cytokine and NLRP3 inflammasome responses in obesity-associated asthma, highlighting the potential utility of T2 cytokine-targeted biologics and inflammasome inhibitors.


Assuntos
Asma , Inflamassomos , Citocinas , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-13 , Interleucina-1beta , Interleucina-5 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Obesidade/complicações
4.
Clin Exp Allergy ; 51(1): 120-131, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098152

RESUMO

BACKGROUND: Asthma is an airway inflammatory disease and a major health problem worldwide. Anti-inflammatory steroids and bronchodilators are the gold-standard therapy for asthma. However, they do not prevent the development of the disease, and critically, a subset of asthmatics are resistant to steroid therapy. OBJECTIVE: To elucidate the therapeutic potential of human ß-defensins (hBD), such as hBD2 mild to moderate and severe asthma. METHODS: We investigated the role of hBD2 in a steroid-sensitive, house dust mite-induced allergic airways disease (AAD) model and a steroid-insensitive model combining ovalbumin-induced AAD with C muridarum (Cmu) respiratory infection. RESULTS: In both models, we demonstrated that therapeutic intranasal application of hBD2 significantly reduced the influx of inflammatory cells into the bronchoalveolar lavage fluid. Furthermore, key type 2 asthma-related cytokines IL-9 and IL-13, as well as additional immunomodulating cytokines, were significantly decreased after administration of hBD2 in the steroid-sensitive model. The suppression of inflammation was associated with improvements in airway physiology and treatment also suppressed airway hyper-responsiveness (AHR) in terms of airway resistance and compliance to methacholine challenge. CONCLUSIONS AND CLINICAL RELEVANCE: These data indicate that hBD2 reduces the hallmark features and has potential as a new therapeutic agent in allergic and especially steroid-resistant asthma.


Assuntos
Resistência das Vias Respiratórias/efeitos dos fármacos , Asma/metabolismo , Interleucina-13/metabolismo , Interleucina-9/metabolismo , Complacência Pulmonar/efeitos dos fármacos , Pulmão/efeitos dos fármacos , beta-Defensinas/farmacologia , Animais , Asma/fisiopatologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/fisiopatologia , Chlamydia muridarum , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/fisiopatologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos , Ovalbumina , Pyroglyphidae , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/fisiopatologia , Infecções Respiratórias/metabolismo , Infecções Respiratórias/fisiopatologia
5.
Eur Respir J ; 55(4)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32184317

RESUMO

Accumulating evidence highlights links between iron regulation and respiratory disease. Here, we assessed the relationship between iron levels and regulatory responses in clinical and experimental asthma.We show that cell-free iron levels are reduced in the bronchoalveolar lavage (BAL) supernatant of severe or mild-moderate asthma patients and correlate with lower forced expiratory volume in 1 s (FEV1). Conversely, iron-loaded cell numbers were increased in BAL in these patients and with lower FEV1/forced vital capacity (FVC) ratio. The airway tissue expression of the iron sequestration molecules divalent metal transporter 1 (DMT1) and transferrin receptor 1 (TFR1) are increased in asthma, with TFR1 expression correlating with reduced lung function and increased Type-2 (T2) inflammatory responses in the airways. Furthermore, pulmonary iron levels are increased in a house dust mite (HDM)-induced model of experimental asthma in association with augmented Tfr1 expression in airway tissue, similar to human disease. We show that macrophages are the predominant source of increased Tfr1 and Tfr1+ macrophages have increased Il13 expression. We also show that increased iron levels induce increased pro-inflammatory cytokine and/or extracellular matrix (ECM) responses in human airway smooth muscle (ASM) cells and fibroblasts ex vivo and induce key features of asthma in vivo, including airway hyper-responsiveness (AHR) and fibrosis, and T2 inflammatory responses.Together these complementary clinical and experimental data highlight the importance of altered pulmonary iron levels and regulation in asthma, and the need for a greater focus on the role and potential therapeutic targeting of iron in the pathogenesis and severity of disease.


Assuntos
Asma , Animais , Humanos , Interleucina-13 , Ferro , Pulmão , Pyroglyphidae
6.
J Pathol ; 251(1): 49-62, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32083318

RESUMO

Increased iron levels and dysregulated iron homeostasis, or both, occur in several lung diseases. Here, the effects of iron accumulation on the pathogenesis of pulmonary fibrosis and associated lung function decline was investigated using a combination of murine models of iron overload and bleomycin-induced pulmonary fibrosis, primary human lung fibroblasts treated with iron, and histological samples from patients with or without idiopathic pulmonary fibrosis (IPF). Iron levels are significantly increased in iron overloaded transferrin receptor 2 (Tfr2) mutant mice and homeostatic iron regulator (Hfe) gene-deficient mice and this is associated with increases in airway fibrosis and reduced lung function. Furthermore, fibrosis and lung function decline are associated with pulmonary iron accumulation in bleomycin-induced pulmonary fibrosis. In addition, we show that iron accumulation is increased in lung sections from patients with IPF and that human lung fibroblasts show greater proliferation and cytokine and extracellular matrix responses when exposed to increased iron levels. Significantly, we show that intranasal treatment with the iron chelator, deferoxamine (DFO), from the time when pulmonary iron levels accumulate, prevents airway fibrosis and decline in lung function in experimental pulmonary fibrosis. Pulmonary fibrosis is associated with an increase in Tfr1+ macrophages that display altered phenotype in disease, and DFO treatment modified the abundance of these cells. These experimental and clinical data demonstrate that increased accumulation of pulmonary iron plays a key role in the pathogenesis of pulmonary fibrosis and lung function decline. Furthermore, these data highlight the potential for the therapeutic targeting of increased pulmonary iron in the treatment of fibrotic lung diseases such as IPF. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Fibrose Pulmonar Idiopática/patologia , Ferro/metabolismo , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Bleomicina/farmacologia , Proliferação de Células , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Knockout
7.
Radiol Artif Intell ; 2(1): e190007, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32076662

RESUMO

A publicly available dataset containing k-space data as well as Digital Imaging and Communications in Medicine image data of knee images for accelerated MR image reconstruction using machine learning is presented.

8.
Am J Respir Crit Care Med ; 196(3): 283-297, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28252317

RESUMO

RATIONALE: Severe, steroid-resistant asthma is the major unmet need in asthma therapy. Disease heterogeneity and poor understanding of pathogenic mechanisms hampers the identification of therapeutic targets. Excessive nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome and concomitant IL-1ß responses occur in chronic obstructive pulmonary disease, respiratory infections, and neutrophilic asthma. However, the direct contributions to pathogenesis, mechanisms involved, and potential for therapeutic targeting remain poorly understood, and are unknown in severe, steroid-resistant asthma. OBJECTIVES: To investigate the roles and therapeutic targeting of the NLRP3 inflammasome and IL-1ß in severe, steroid-resistant asthma. METHODS: We developed mouse models of Chlamydia and Haemophilus respiratory infection-mediated, ovalbumin-induced severe, steroid-resistant allergic airway disease. These models share the hallmark features of human disease, including elevated airway neutrophils, and NLRP3 inflammasome and IL-1ß responses. The roles and potential for targeting of NLRP3 inflammasome, caspase-1, and IL-1ß responses in experimental severe, steroid-resistant asthma were examined using a highly selective NLRP3 inhibitor, MCC950; the specific caspase-1 inhibitor Ac-YVAD-cho; and neutralizing anti-IL-1ß antibody. Roles for IL-1ß-induced neutrophilic inflammation were examined using IL-1ß and anti-Ly6G. MEASUREMENTS AND MAIN RESULTS: Chlamydia and Haemophilus infections increase NLRP3, caspase-1, IL-1ß responses that drive steroid-resistant neutrophilic inflammation and airway hyperresponsiveness. Neutrophilic airway inflammation, disease severity, and steroid resistance in human asthma correlate with NLRP3 and IL-1ß expression. Treatment with anti-IL-1ß, Ac-YVAD-cho, and MCC950 suppressed IL-1ß responses and the important steroid-resistant features of disease in mice, whereas IL-1ß administration recapitulated these features. Neutrophil depletion suppressed IL-1ß-induced steroid-resistant airway hyperresponsiveness. CONCLUSIONS: NLRP3 inflammasome responses drive experimental severe, steroid-resistant asthma and are potential therapeutic targets in this disease.


Assuntos
Asma/genética , Asma/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Animais , Asma/metabolismo , Modelos Animais de Doenças , Resistência a Medicamentos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Índice de Gravidade de Doença , Resultado do Tratamento
9.
Mol Immunol ; 86: 44-55, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28129896

RESUMO

Innate immune responses act as first line defences upon exposure to potentially noxious stimuli. The innate immune system has evolved numerous intracellular and extracellular receptors that undertake surveillance for potentially damaging particulates. Inflammasomes are intracellular innate immune multiprotein complexes that form and are activated following interaction with these stimuli. Inflammasome activation leads to the cleavage of pro-IL-1ß and release of the pro-inflammatory cytokine, IL-1ß, which initiates acute phase pro-inflammatory responses, and other responses are also involved (IL-18, pyroptosis). However, excessive activation of inflammasomes can result in chronic inflammation, which has been implicated in a range of chronic inflammatory diseases. The airways are constantly exposed to a wide variety of stimuli. Inflammasome activation and downstream responses clears these stimuli. However, excessive activation may drive the pathogenesis of chronic respiratory diseases such as severe asthma and chronic obstructive pulmonary disease. Thus, there is currently intense interest in the role of inflammasomes in chronic inflammatory lung diseases and in their potential for therapeutic targeting. Here we review the known associations between inflammasome-mediated responses and the development and exacerbation of chronic lung diseases.


Assuntos
Imunidade Inata , Inflamassomos/imunologia , Pneumopatias/imunologia , Pulmão/imunologia , Caspase 1/metabolismo , Doença Crônica , Humanos , Inflamassomos/metabolismo , Inflamação/imunologia , Interleucina-18/biossíntese , Interleucina-18/metabolismo , Interleucina-1beta/biossíntese , Interleucina-1beta/metabolismo , Pneumopatias/microbiologia , Macrófagos Alveolares/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais
10.
J Allergy Clin Immunol ; 139(2): 519-532, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27448447

RESUMO

BACKGROUND: Severe steroid-insensitive asthma is a substantial clinical problem. Effective treatments are urgently required, however, their development is hampered by a lack of understanding of the mechanisms of disease pathogenesis. Steroid-insensitive asthma is associated with respiratory tract infections and noneosinophilic endotypes, including neutrophilic forms of disease. However, steroid-insensitive patients with eosinophil-enriched inflammation have also been described. The mechanisms that underpin infection-induced, severe steroid-insensitive asthma can be elucidated by using mouse models of disease. OBJECTIVE: We sought to develop representative mouse models of severe, steroid-insensitive asthma and to use them to identify pathogenic mechanisms and investigate new treatment approaches. METHODS: Novel mouse models of Chlamydia, Haemophilus influenzae, influenza, and respiratory syncytial virus respiratory tract infections and ovalbumin-induced, severe, steroid-insensitive allergic airway disease (SSIAAD) in BALB/c mice were developed and interrogated. RESULTS: Infection induced increases in the levels of microRNA (miRNA)-21 (miR-21) expression in the lung during SSIAAD, whereas expression of the miR-21 target phosphatase and tensin homolog was reduced. This was associated with an increase in levels of phosphorylated Akt, an indicator of phosphoinositide 3-kinase (PI3K) activity, and decreased nuclear histone deacetylase (HDAC)2 levels. Treatment with an miR-21-specific antagomir (Ant-21) increased phosphatase and tensin homolog levels. Treatment with Ant-21, or the pan-PI3K inhibitor LY294002, reduced PI3K activity and restored HDAC2 levels. This led to suppression of airway hyperresponsiveness and restored steroid sensitivity to allergic airway disease. These observations were replicated with SSIAAD associated with 4 different pathogens. CONCLUSION: We identify a previously unrecognized role for an miR-21/PI3K/HDAC2 axis in SSIAAD. Our data highlight miR-21 as a novel therapeutic target for the treatment of this form of asthma.


Assuntos
Asma/genética , Chlamydia muridarum/imunologia , Haemophilus influenzae/imunologia , Histona Desacetilase 2/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Pneumonia/genética , Vírus Sinciciais Respiratórios/imunologia , Infecções Respiratórias/genética , Animais , Antagomirs/genética , Asma/tratamento farmacológico , Asma/imunologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Resistência a Medicamentos , Regulação da Expressão Gênica , Histona Desacetilase 2/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/imunologia
11.
Clin Transl Immunology ; 5(7): e91, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27525064

RESUMO

Corticosteroids are broadly active and potent anti-inflammatory agents that, despite the introduction of biologics, remain as the mainstay therapy for many chronic inflammatory diseases, including inflammatory bowel diseases, nephrotic syndrome, rheumatoid arthritis, chronic obstructive pulmonary disease and asthma. Significantly, there are cohorts of these patients with poor sensitivity to steroid treatment even with high doses, which can lead to many iatrogenic side effects. The dose-limiting toxicity of corticosteroids, and the lack of effective therapeutic alternatives, leads to substantial excess morbidity and healthcare expenditure. We have developed novel murine models of respiratory infection-induced, severe, steroid-resistant asthma that recapitulate the hallmark features of the human disease. These models can be used to elucidate novel disease mechanisms and identify new therapeutic targets in severe asthma. Hypothesis-driven studies can elucidate the roles of specific factors and pathways. Alternatively, 'Omics approaches can be used to rapidly generate new targets. Similar approaches can be used in other diseases.

13.
Thorax ; 70(5): 458-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25746630

RESUMO

BACKGROUND: Steroid-insensitive endotypes of asthma are an important clinical problem and effective therapies are required. They are associated with bacterial infection and non-eosinophilic inflammatory responses in the asthmatic lung. Macrolide therapy is effective in steroid-insensitive endotypes, such as non-eosinophilic asthma. However, whether the effects of macrolides are due to antimicrobial or anti-inflammatory mechanisms is not known. OBJECTIVE: To determine and assess the efficacy of macrolide (ie, clarithromycin) and non-macrolide (ie, amoxicillin) antibiotic treatments in experimental models of infection-induced, severe, steroid-insensitive neutrophilic allergic airways disease (SSIAAD), compared with steroid-sensitive AAD and to delineate the antimicrobial and anti-inflammatory effects of macrolide therapy. METHODS: We developed and used novel mouse models of Chlamydia and Haemophilus lung infection-induced SSIAAD. We used these models to investigate the effects of clarithromycin and amoxicillin treatment on immune responses and airways hyper-responsiveness (AHR) in Ova-induced, T helper lymphocyte (Th) 2 -associated steroid-sensitive AAD and infection-induced Th1/Th17-associated SSIAAD compared with dexamethasone treatment. RESULTS: Clarithromycin and amoxicillin had similar antimicrobial effects on infection. Amoxicillin did attenuate some features, but did not broadly suppress either form of AAD. It did restore steroid sensitivity in SSIAAD by reducing infection. In contrast, clarithromycin alone widely suppressed inflammation and AHR in both steroid-sensitive AAD and SSIAAD. This occurred through reductions in Th2 responses that drive steroid-sensitive eosinophilic AAD and tumour necrosis factor α and interleukin 17 responses that induce SSIAAD. CONCLUSIONS: Macrolides have broad anti-inflammatory effects in AAD that are likely independent of their antimicrobial effects. The specific responses that are suppressed are dependent upon the responses that dominate during AAD.


Assuntos
Amoxicilina/uso terapêutico , Antibacterianos/uso terapêutico , Asma/tratamento farmacológico , Infecções por Chlamydophila/tratamento farmacológico , Claritromicina/uso terapêutico , Infecções por Haemophilus/tratamento farmacológico , Animais , Asma/etiologia , Infecções por Chlamydophila/complicações , Chlamydophila pneumoniae , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Feminino , Glucocorticoides/uso terapêutico , Infecções por Haemophilus/complicações , Haemophilus influenzae , Camundongos , Camundongos Endogâmicos BALB C
14.
Clin Sci (Lond) ; 129(3): 245-58, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25783022

RESUMO

Viral exacerbations of chronic obstructive pulmonary disease (COPD), commonly caused by rhinovirus (RV) infections, are poorly controlled by current therapies. This is due to a lack of understanding of the underlying immunopathological mechanisms. Human studies have identified a number of key immune responses that are associated with RV-induced exacerbations including neutrophilic inflammation, expression of inflammatory cytokines and deficiencies in innate anti-viral interferon. Animal models of COPD exacerbation are required to determine the contribution of these responses to disease pathogenesis. We aimed to develop a short-term mouse model that reproduced the hallmark features of RV-induced exacerbation of COPD. Evaluation of complex protocols involving multiple dose elastase and lipopolysaccharide (LPS) administration combined with RV1B infection showed suppression rather than enhancement of inflammatory parameters compared with control mice infected with RV1B alone. Therefore, these approaches did not accurately model the enhanced inflammation associated with RV infection in patients with COPD compared with healthy subjects. In contrast, a single elastase treatment followed by RV infection led to heightened airway neutrophilic and lymphocytic inflammation, increased expression of tumour necrosis factor (TNF)-α, C-X-C motif chemokine 10 (CXCL10)/IP-10 (interferon γ-induced protein 10) and CCL5 [chemokine (C-C motif) ligand 5]/RANTES (regulated on activation, normal T-cell expressed and secreted), mucus hypersecretion and preliminary evidence for increased airway hyper-responsiveness compared with mice treated with elastase or RV infection alone. In summary, we have developed a new mouse model of RV-induced COPD exacerbation that mimics many of the inflammatory features of human disease. This model, in conjunction with human models of disease, will provide an essential tool for studying disease mechanisms and allow testing of novel therapies with potential to be translated into clinical practice.


Assuntos
Asma/imunologia , Infecções por Picornaviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/virologia , Rhinovirus/imunologia , Animais , Asma/virologia , Quimiocinas/imunologia , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos/imunologia , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/imunologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA