Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Anal Chim Acta ; 1301: 342448, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553120

RESUMO

BACKGROUND: The incorporation of bimetallic magnetic ionic liquids (MILs) in microextraction methods is an emerging trend due to the improved magnetic susceptibility offered by these solvents, which relies on the presence of metallic components in both the cation and the anion. This feature favors easy magnetic separation of these solvents in analytical sample preparation strategies. However, reported liquid-phase microextraction methods based on bimetallic MILs still present an important drawback in that the MILs are highly viscous, making a dispersive solvent during the microextraction procedure necessary, while also requiring a tedious back-extraction step prior to the chromatographic analysis. RESULTS: We propose for the first time a new generation of ultra-low viscosity bimetallic MILs composed of two paramagnetic Mn(II) complexes characterized by their easy usage in dispersive liquid-liquid microextraction (DLLME). The approach does not require dispersive solvent and the MIL-DLLME setup was directly combined with high-performance liquid chromatography (HPLC) and fluorescence detection (FD), without any back-extraction step. The approach was evaluated for the determination of five monohydroxylated polycyclic aromatic hydrocarbons, as carcinogenic biomarkers, in human urine. Optimum conditions of the MIL-DLLME method included the use of a low MIL volume (75 µL), a short extraction time (5 min), and no need of any dispersive solvent neither NaCl. The method presented limits of detection down to 7.50 ng L-1, enrichment factors higher than 17, and provided inter-day relative standard deviation lower than 11%. Analysis of urine samples was successfully performed, with biomarker content found at levels between 0.24 and 7.8 ng mL-1. SIGNIFICANCE: This study represents the first liquid-phase microextraction method using the new generation of low-viscous bimetallic MILs. The proposed MIL-DLLME approach represents 2 important advances with respect to previous methods employing bimetallic MILs: 1) no dispersive solvent is required, and 2) direct injection of the MIL in the HPLC is possible after minor dilution (no back extraction steps are required). Therefore, the microextraction strategy is simple, rapid, and consumes very small amounts of energy.

2.
J Chromatogr A ; 1707: 464291, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37582319

RESUMO

Sample preparation is a key step in most analytical methods, generally regarded as the least green step of the entire procedure. The existing green metrics assess the greenness of sample preparation techniques through the evaluation of the whole analytical procedure: including sampling, sample preparation, and the final detection/quantitation. Such inclusion of the entire method makes assessing the sustainability of a newly developed sample preparation technique quite challenging, as many aspects not solely linked to the sample preparation step are unavoidably considered. Thus, an alternative metric that can explicitly and exclusively evaluate the sample preparation is proposed. The metric is simple; it reports the result with a clock-like diagram, displaying the greenness outcome of main sample preparation parameters and a total score. This new metric can differentiate closely related microextraction approaches in terms of sustainability. The metric is also open-source and can be used by downloading the Excel sheet provided.


Assuntos
Manejo de Espécimes
3.
J Chromatogr A ; 1685: 463577, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36323106

RESUMO

Magnetic ionic liquids (MILs) are materials of special interest in analytical chemistry and, particularly, in analytical microextraction. These solvents possess several of the properties derived from their inherent nature of ionic liquids, combined with their magnetism, that permits their manipulation with an external magnetic field. This feature allows for performing typical steps of the microextraction procedure in a simpler manner with the aid of a strong magnet. Although there are several important reviews summarizing the most innovative advances in this field, there is a gap of information, as they do not provide useful details and tips related to the experimental set up of these procedures. This tutorial review fills this gap by providing a guide for the proper handling of MILs, their manipulation with magnets, and their proper hyphenation with the most used analytical techniques. Attention is paid to dispersive liquid-liquid microextraction, stir-bar dispersive liquid microextraction, aqueous biphasic systems, and single-drop microextraction, for being the analytical microextraction techniques mostly employed with MILs. This review also introduces a classification of the MILs employed in analytical microextraction in three classes (denoted as A, B, and C) as a function of the MIL nature (metal-containing anion, metal-containing cation, and radical-containing ion), and discuss about the prospect and future trends regarding new MIL families in microextraction together with new directions expected in these procedures.


Assuntos
Líquidos Iônicos , Microextração em Fase Líquida , Humanos , Líquidos Iônicos/química , Microextração em Fase Líquida/métodos , Magnetismo , Solventes/química , Fenômenos Magnéticos
4.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164078

RESUMO

Hybrid materials based on polystyrene (PS) and green metal-organic frameworks (MOFs) were synthesized, characterized, and evaluated as potential sorbents in dispersive micro-solid-phase extraction (µ-dSPE). Among the resulting materials, the hybrid PS/DUT-67(Zr) was selected as the adequate extraction material for the monitoring of six personal care products in micellar cosmetic samples, combining the µ-dSPE method with ultra-high performance liquid chromatography (UHPLC) coupled to ultraviolet/visible detection (UV/Vis). Univariate studies and a factorial design were performed in the optimization of the microextraction procedure. The compromise optimum extraction conditions included 20 mg of PS/DUT-67(Zr) for 10 mL of sample, 2 min of extraction time, and two desorption steps using 100 µL of acetonitrile and 5 min assisted by vortex in each one. The validated µ-dSPE-UHPLC-UV/Vis method presented limits of detection and quantification down to 3.00 and 10.0 µg·L-1, respectively. The inter-day precision values were lower than 23.5 and 21.2% for concentration levels of 75 µg·L-1 and 650 µg·L-1, respectively. The hydrophobicity of the resulting PS/DUT-67(Zr) material was crucial for the improvement of its extraction capacity in comparison with its unitary components, showing the advantages of combining MOFs with other materials, getting new sorbents with interesting properties.

5.
ACS Appl Mater Interfaces ; 14(3): 4510-4521, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35006682

RESUMO

A device comprising a zirconium-based metal-organic framework (MOF) mixed-matrix membrane (MMM) framed in a plastic holder has been used to monitor the content of personal care products (PCPs) in cosmetic samples. Seven different devices containing the porous frameworks UiO-66, UiO-66-COOH, UiO-67, DUT-52, DUT-67, MOF-801, and MOF-808 in polyvinylidene fluoride (PVDF) membranes were studied. Optimized membranes reach high adsorption capacities of PCPs, up to 12.5 mg·g-1 benzophenone in a 3.0 mg·L-1 sample. The MMM adsorption kinetics, uptake measurements, and isotherm studies were carried out with aqueous standard solutions of PCPs to ensure complete characterization of the performance. The studies demonstrate the high applicability and selectivity of the composites prepared, highlighting the performance of PVDF/DUT-52 MMM that poses uptakes up to 78% for those PCPs with higher affinity while observing detection limits for the entire method down to 0.03 µg·L-1. The PVDF/DUT-52 device allowed the detection of parabens and benzophenones in the samples, with PCPs found at concentrations of 1.9-24 mg·L-1.

6.
ACS Appl Mater Interfaces ; 13(38): 45639-45650, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34544233

RESUMO

Metal-organic frameworks (MOFs) are attractive materials used as sorbents in analytical microextraction applications for contaminants of emerging concern (CECs) from environmental liquid matrices. The demanding specs for a sorbent in the analytical application can be comprehensively studied by considering the interactions of the target analytes with the frameworks by the use of single-crystal X-ray diffraction, computational analysis, and adsorption studies, including the kinetic ones. The current study intends a better understanding of the interactions of target CECs (particularly, propylparaben (PPB) as a model) and three Zn-based layered pillared MOFs: CIM-81 [Zn2(tz)2(bdc)] (Htz = 1,2,4-triazole and H2bdc = 1,4-benzenedicarboxylic acid) and their amino derivatives [Zn2(NH2-tz)2(bdc)] CIM-82 and [Zn2(tz)2(NH2-bdc)] CIM-83 (NH2-Htz = 3-amino-1,2,4-triazole and NH2-H2bdc = 2-amino-1,4-benzenedicarboxylic acid). The crystal structures of the two solvate compounds (dma@CIM-81 (dma = dimethylacetamide) and acetone@CIM-81) were solved by single-crystal X-ray diffraction to determine the points of interaction between the framework and the guest molecules. They also served as a starting point for the computational modeling of the PPB@CIM-81 compound, showing that up to two PPB molecules can be hosted in one of the pores, while only one can be trapped in the second pore type, leading to a maximum theoretical capacity of 291.9 mg g-1. This value is close to the value obtained by the adsorption isotherm experiment for CIM-81 (283 mg g-1). This value is, by far, higher than those previously reported for other materials for the removal of PPB from water, and also higher than the experimental values obtained for CIM-82 (54 mg g-1) and CIM-83 (153 mg g-1). The kinetics of adsorption is not very fast, with uptake of about 40% in 3 h, although a 70% release in methanol is achieved in 1 h. In addition, a further comparison of performance in analytical microextraction (requiring only 10 mg of CIM-81) was carried out together with chromatographic analysis to support all insights attained, with the method being able to monitor CECs as low as µg L-1 levels in complex environmental water samples, thus performing successfully for water monitoring even in multicomponent scenarios.

7.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198808

RESUMO

Volatile methylsiloxanes (VMSs) constitute a group of compounds used in a great variety of products, particularly personal care products. Due to their massive use, they are continually discharged into wastewater treatment plants and are increasingly being detected in wastewater and in the environment at low concentrations. The aim of this work was to develop and validate a fast and reliable methodology to screen seven VMSs in water samples, by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography with flame ionization detection (GC-FID). The influence of several factors affecting the extraction efficiency was investigated using a design of experiments approach. The main factors were selected (fiber type, sample volume, ionic strength, extraction and desorption time, extraction and desorption temperature) and optimized, employing a central composite design. The optimal conditions were: 65 µm PDMS/Divinylbenzene fiber, 10 mL sample, 19.5% NaCl, 39 min extraction time, 10 min desorption time, and 33 °C and 240 °C as extraction and desorption temperature, respectively. The methodology was successfully validated, showing low detection limits (up to 24 ng/L), good precision (relative standard deviations below 15%), and accuracy ranging from 62% to 104% in wastewater, tap, and river water samples.


Assuntos
Siloxanas/análise , Microextração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Ionização de Chama , Água Doce/química , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Rios/química , Águas Residuárias/química
8.
Talanta ; 232: 122440, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074425

RESUMO

A headspace solid-phase microextraction (HS-SPME) method was developed using the metal-organic framework (MOF) CIM-80(Al) as extraction phase and in combination with gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of 6 methylsiloxanes and 7 musk fragrances in different environmental waters. The chromatographic separation was optimized in different GC instruments equipped with different detectors, allowing the correct separation and identification of the compounds. The HS-SPME method was optimized using a Box-Behnken experimental design, while the validation was carried out together with the most suitable commercial fiber (divinylbenzene/polydimethylsiloxane) for comparison purposes. The MOF-based coating was particularly efficient for the determination of volatile methylsiloxanes, showing moderately lower limits of detection (of 0.2 and 0.5 µg L-1versus 0.6 µg L-1 for cyclic methylsiloxanes) and slightly better precision (relative standard deviation values lower than 17% versus 22%) than the commercial coating, while avoiding the cross-contamination issues associated to the polymeric composition of commercial fibers. The method was applied for the analysis of seawater and wastewater samples, allowing the quantification of several analytes and the assessment of matrix effects. The proposed HS-SPME method using the CIM-80(Al) fiber constitutes a more environmentally friendly, simpler, and efficient strategy in comparison with other sample preparation methods using different extraction techniques, while the use of a MOF as fiber sorbent constitutes a potential alternative to exploit the features of SPME for the challenging environmental monitoring of these compounds.

9.
J Chromatogr A ; 1648: 462219, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992994

RESUMO

A miniaturized extraction/preconcentration method based on an aqueous biphasic system (µ-ABS) was developed with reagents commonly used as food additives: cholinium chloride (ChCl) as main extraction phase, K2HPO4 as salting-out agent, and water as the main component (being the sample for analyses). With the aim of obtaining high enrichment factors, miniaturization, and adequate analytical performance, a point in the biphasic region with the lowest amount of ChCl was selected, corresponding to 1.55% (w/w) of ChCl, 59.5% (w/w) of K2HPO4, and 38.95% (w/w) of water. The green µ-ABS (attending to its main elements and performance mode) was used in combination with high-performance liquid chromatography with diode-array detection (HPLC-DAD) for the determination of 9 personal care products in wastewater samples. The µ-ABS-HPLC-DAD method showed high enrichment factors (up to 100), and quantitative extraction efficiencies for those compounds containing OH groups in their structure, which can undergo hydrogen bonding with ChCl. Thus, limits of quantification down to 0.8 µg·L-1 and extraction efficiencies between 66.4 and 108% (concentration levels of 1.3 and 13 µg·L-1) were reached for the group of parabens and the UV-filter benzophenone-3. The method is characterized by the use of non-harmful reagents and the absence of organic solvents in the entire sample preparation procedure, while being simple, low-cost, easily compatible with HPLC, and highly efficient.


Assuntos
Cloretos/análise , Miniaturização , Fosfatos/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão/métodos , Cosméticos/análise , Reprodutibilidade dos Testes , Solventes/química , Água/análise
10.
Front Bioeng Biotechnol ; 9: 584115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33598453

RESUMO

In this study, the application of amphipods in vivo assays was evaluated. The main aim of this work was to check the potential use of this model in biocompatibility assessments of metal-organic frameworks (MOFs). Hence, six different MOFs were synthesized and the in vitro and ex vivo cytotoxicity was first assessed using a colorimetric assay and a macrophage cell line. Obtained results were compared to validate the in vivo toxicity tests carried out using amphipods and increasing concentrations of the different MOFs. Amphipods do not require the need of ethics approval and also are less expensive to keep than conventional in vivo models, showing its potential as a fast and reliable platform in toxicity studies. The obtained results showed that the amphipods based-assay was simple, easy to replicate and yielded toxicity data corresponding to the type of MOFs tested. In addition, it was observed that only CIM-80(Al) and CIM-84(Zr) did not show any toxicity to the animals at the different tested concentrations. Therefore, the developed in vivo model could be applied as a high-throughput toxicity screening method to evaluate the toxicity of numerous materials, chemicals and therapeutic agents among others.

11.
Talanta ; 225: 122053, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592775

RESUMO

Green analytical chemistry principles should be followed, as much as possible, and particularly during the development of analytical sample preparation methods. In the past few years, outstanding materials such as ionic liquids, metal-organic frameworks, carbonaceous materials, molecularly imprinted materials, and many others, have been introduced in a wide variety of miniaturized techniques in order to reduce the amount of solvents and sorbents required during the analytical sample preparation step while pursuing more efficient extraction methods. Among them, magnetic nanomaterials (MNMs) have gained special attention due to their versatile properties. Mainly, their ability to be separated from the sample matrix using an external magnetic field (thus enormously simplifying the entire process) and their easy combination with other materials, which implies the inclusion of a countless number of different functionalities, highly specific in some cases. Therefore, MNMs can be used as sorbents or as magnetic support for other materials which do not have magnetic properties, the latter permiting their combination with novel materials. The greenness of these magnetic sorbents in miniaturized extractions techniques is generally demonstrated in terms of their ease of separation and amount of sorbent required, while the nature of the material itself is left unnoticed. However, the synthesis of MNMs is not always as green as their applications, and the resulting MNMs are not always as safe as desired. Is the analytical sample preparation field ready for using green magnetic nanomaterials? This review offers an overview, from a green analytical chemistry perspective, of the current state of the use of MNMs as sorbents in microextraction strategies, their preparation, and the analytical performance offered, together with a critical discussion on where efforts should go.

12.
Anal Chim Acta ; 1143: 225-249, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33384121

RESUMO

Since the development of liquid-phase microextraction (LPME), different LPME modes depending on the experimental set-up to carry out the extraction have been described. Dispersive liquid-liquid microextraction (DLLME), in which a small amount of the water-insoluble extraction solvent is dispersed in the sample, is the most successful mode in terms of number of applications reported. Advances within DLLME have been mainly shifted to the incorporation of green, smart and tunable materials as extraction solvents to improve the sustainability and efficiency of the method. In this sense, hydrophilic media represent a promising alternative since the water-miscibility of these substances increases the mass transfer of the analytes to the extraction media, leading to higher extraction efficiencies. Considering the variety of hydrophilic media that have been incorporated in LPME approaches resembling DLLME, this review aims to classify these methods in order to clarify the confusing terminology used for some of the strategies. Hydrophilic media covered in this review comprise surfactants, polar organic solvents, deep eutectic solvents, ionic liquids, water-miscible polymers, and switchable solvents. Different physicochemical mechanisms of phase separation are discussed for each LPME method, including the coacervation phenomena and other driving forces, such as pH, temperature, salting-out effect, metathesis reaction and organic solvents. LPME modes are classified (in cloud-point extraction, coacervative extraction, aqueous biphasic systems, and different DLLME modes depending on the extraction medium) according to both the nature of the water-miscible extraction phase and the driving force of the separation. In addition, the main advances and analytical applications of these methods in the last three years are described.

13.
J Chromatogr A ; 1634: 461670, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33197845

RESUMO

This review overviews the main developments achieved in analytical sample preparation regarding the use of solid sorbents as extractants in different sorbent-based miniaturized, micro-scale and microextraction methods. Two main groups are proposed for the classification of the current approaches, based on their operational mode: micro-solid-phase extraction (µ-SPE) and solid-phase microextraction (SPME), while describing their respective main sub-modes: static- and dispersive-µ-SPE, and SPME with fibers and in tube SPME. Furthermore, other important sorbent-based microscale approaches (e.g., stir bar sorptive extraction, stir cake sorptive extraction, stir bar sorptive-dispersive microextraction, and thin film microextraction, among others) are also considered.


Assuntos
Microextração em Fase Sólida/métodos , Microextração em Fase Sólida/tendências , Absorção Fisico-Química
14.
Molecules ; 25(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076463

RESUMO

Aqueous solutions of ionic liquids (ILs) with surface active properties were used as extraction solvents, taking advantage of their impressive solvation properties, in a green microwave-assisted solid-liquid extraction method (IL-MA-SLE) for the extraction of flavonoids from passion fruit and mango leaves. The extraction method was combined with high-performance liquid chromatography and photodiode-array detection (HPLC-PDA) and optimized by response surface methodology using the Box-Behnken experimental design. Under optimum conditions, the extraction efficiency of six structurally different IL-based surfactants was evaluated. Thus, imidazolium-, guanidinium- and pyridinium-type ILs with different tailorable characteristics, such as side chain length and multicationic core, were assessed. The decylguanidinium chloride ([C10Gu+][Cl-]) IL-based surfactant was selected as key material given its superior performance and its low cytotoxicity, for the determination of flavonoids of several samples of Passiflora sp. and Mangifera sp. leaves from the Canary Islands, and using as target analytes: rutin, quercetin and apigenin. The analysis of 50 mg of plant material only required 525 µL of the low cytotoxic IL-based surfactant solution at 930 mM, 10.5 min of microwave irradiation at 30 °C and 50 W, which involves a simpler, faster, more efficient and greener method in comparison with other strategies reported in the literature for obtaining bioactive compounds profiles from plants.


Assuntos
Flavonoides/química , Líquidos Iônicos/química , Mangifera/química , Passiflora/química , Flavonoides/isolamento & purificação , Micro-Ondas , Extratos Vegetais/química , Folhas de Planta/química , Rutina/química , Solventes/química , Tensoativos/química
15.
Anal Chim Acta ; 1133: 137-149, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32993866

RESUMO

A new solid-phase microextraction (SPME) fiber coating was prepared by the immobilization of the metal-organic framework (MOF) CIM-80(Al) on nitinol wires by a green in situ growth approach, using an aqueous synthetic approach, and without the need of any additional material to ensure the attachment of the MOF to the nitinol support. The coating was used for the development of headspace (HS) and direct immersion (DI) SPME methods in combination with gas chromatography and mass spectrometry (GC-MS) for the determination of polycyclic aromatic hydrocarbons (PAHs) as model compounds. Both methods were optimized and validated using the MOF-based fiber together with the commercial polydimethylsiloxane (PDMS) fiber. The MOF extraction phase exhibited superior analytical performance for most of the PAHs in HS-SPME mode (and particularly for less volatiles), while the PDMS fiber presented better results in the DI-SPME method. The analytical performance of the MOF sorbent coating in HS- and DI-SPME methods was also evaluated in urine and brewed coffee samples, without requiring any pretreatment step apart from dilution for DI-SPME experiments, thus showing suitability of the novel coatings for the analysis of complex samples. The proposed CIM-80(Al) fiber was efficient and biocompatible (for using a low cytotoxic sorbent and a biocompatible core support), and it also demonstrated stability and robustness, with inter-fiber (and inter-day) relative standard deviation values lower than 19%, and reusability for more than 80 extraction cycles using 280 °C as desorption temperature.


Assuntos
Estruturas Metalorgânicas , Hidrocarbonetos Policíclicos Aromáticos , Microextração em Fase Sólida , Poluentes Químicos da Água , Café , Cromatografia Gasosa-Espectrometria de Massas , Imersão , Hidrocarbonetos Policíclicos Aromáticos/análise , Urina , Água , Poluentes Químicos da Água/análise
16.
Molecules ; 25(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640534

RESUMO

This paper proposes a new sustainable and simple strategy for the micro-scale extraction of phenolic compounds from grapevine leaves with analytical purpose. The method is based on a microwave-assisted solid-liquid extraction approach (MA-SLE), using an aqueous solution of an ionic liquid (IL)-based surfactant as extraction phase. The method does not require organic solvents, nor any clean-up step, apart from filtration prior to the injection in the analytical system. Two IL-based surfactants were evaluated, and the method was optimized by using experimental designs, resulting in the use of small amounts of sample (100 mg) and extraction phase (2.25 mL), low concentrations of the selected 1-hexadecyl-3-butyl imidazolium bromide IL (0.1 mM), and 30 min of extraction time. The proposed methodology was applied for the determination of the polyphenolic pattern of six different varieties of Vitis vinifera leaves from the Canary Islands, using high-performance liquid chromatography and photodiode array detection for the quantification of the compounds. The proposed MA-SLE approach was greener, simpler, and more effective than other methods, while the results from the analysis of the leaves samples demonstrate that these by-products can be exploited as a source of natural compounds for many applications.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Líquidos Iônicos/química , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Tensoativos/química , Vitis/química , Cromatografia Líquida de Alta Pressão/instrumentação , Imidazóis/química , Micro-Ondas , Fenóis/análise , Extratos Vegetais/análise , Extratos Vegetais/química , Polifenóis/análise , Polifenóis/isolamento & purificação , Solventes/análise , Solventes/química , Espanha , Tensoativos/síntese química
17.
Talanta ; 215: 120910, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32312454

RESUMO

Chemical vapor deposition of MOFs (MOF-CVD) has been used to coat solid-phase microextraction (SPME) fibers with ZIF-8, by exposing ZnO layers to the linker vapor (2-methylimidazole). This ZIF-8 coating has been used as a seed layer in a following solvothermal MOF growth step in order to increase the ZIF-8 thickness. The combined MOF-CVD and solvothermal growth of ZIF-8 on the fibers result in a thickness of ~3 µm, with adequate thermal stability, and mechanical integrity when tested with methanol and acetonitrile ultrasonic treatments. The fibers have been evaluated in direct immersion mode using gas chromatography and flame ionization detection (GC-FID), for a group of target analytes including three polycyclic aromatic hydrocarbons (PAHs) and five personal care products (PCPs). The optimized conditions of the SPME-GC-FID methods include low amount of aqueous sample (5 mL), stirring for 45 min at 35 °C, and desorption at 280 °C for 5 min. The method presents limits of detection down to 0.6 µg L-1; intra-day, inter-day and inter-batch relative standard deviation values lower than 16%, 19%, and 23%, respectively; and a lifetime higher than 70 cycles.

18.
J Chromatogr A ; 1619: 460910, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32008827

RESUMO

A pH-sensitive polymer based on the poly(styrene-alt-maleic anhydride) co-polymer serves as basis to develop a microextraction method (pH-HGME) in direct combination with high-performance liquid chromatography (HPLC) and fluorescence detection (FD) for the determination of seven organic compounds, including three polycyclic aromatic hydrocarbons (PAHs), three monohydroxylated PAHs and one alkylphenol, in urine. The method bases on the structural modification of the pH-sensitive polymer in the aqueous sample at a high pH value, followed by the formation and insolubilization of a hydrogel containing the preconcentrated analytes by decreasing the pH, and the direct injection of the hydrogel-rich phase in the HPLC-FD system. The optimization of the main variables permitted the selection of low amounts of aqueous sample (10 mL), which was mixed with 10 mg of co-polymer also present in a low volume (150 µL) of concentrated NaOH. The method further requires the addition of 200 µL of concentrated HCl, 3 min of stirring, and 15 min of centrifugation. This pH-HGME-HPLC-FD method presented low limits of detection, ranging from 0.001 µg L-1 to 0.09 µg L-1 in ultrapure water, average relative recoveries of 96.9% for the concentration level of 0.60 µg L-1, and enrichment factors between 1.50 and 17.7. The proposed method also exhibited high precision, with intermediate relative standard deviations lower than 16% for a concentration level of 0.60 µg L-1. The developed pH-HGME-HPLC-FD method performed adequately when analyzing two human urine samples provided by a non-smoker male and a smoker female, respectively. One of the target analytes (2-hydroxynaphthalene) was quantified in both samples using the standard addition method, with a predicted concentration of 7.3 ± 0.4 µg L-1 in the non-smoker male urine and 19.3 ± 0.6 µg L-1 in the smoker female urine.


Assuntos
Cromatografia Líquida de Alta Pressão , Microextração em Fase Líquida/métodos , Maleatos/química , Hidrocarbonetos Policíclicos Aromáticos/urina , Poliestirenos/química , Feminino , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Masculino , Fenóis/urina , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação
19.
J Sep Sci ; 43(9-10): 1890-1907, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32074395

RESUMO

Ionic liquids and derivatives-mainly polymeric ionic liquids and magnetic ionic liquids-have been extensively used in microscale extraction over the past few years. Current trends in analytical sample preparation gear toward linking microextraction approaches with high-throughput sample processing to comply with green analytical chemistry requirements. A variety of high sample throughput strategies that are coupled to both ionic-liquid-based solid-phase microextraction and ionic liquid-based liquid-phase microextraction are herein reported. The review is focused on microscale extraction methods that use (i) custom-made and dedicated extraction devices, (ii) parallel extraction, (iii) magnetic-based separation, and (iv) miniaturized systems employing semi-automatic or fully automatic flow injection methods, related micro/millifluidic devices, and robotic equipment.

20.
Talanta ; 211: 120723, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070617

RESUMO

Core-shell SiO2@CIM-80(Al) microspheres were synthesized, characterized, and used as novel sorbent in a dispersive miniaturized solid-phase extraction (D-µSPE) method for the determination of fourteen polycyclic aromatic hydrocarbons (PAHs) in wastewaters by ultra-high performance liquid chromatography coupled to a fluorescence detector (UHPLC-FD). A Doehlert experimental design permitted to optimize the main parameters affecting the microextraction procedure, intending the obtaining of a simple approach. Optimized extraction conditions include 13 mg of SiO2@CIM-80(Al) microparticles (~2 mg CIM-80(Al)), 2.5 min of extraction time, 0.125 mL of acetonitrile (ACN) as desorption solvent and 0.5 min of desorption time. The entire method showed adequate analytical performance with limits of detection down to 5 ng L-1, and inter-day precision lower than 14.1% for a concentration level of 0.5 µg L-1. The extraction capability of SiO2@CIM-80(Al) microspheres was compared to that obtained with commercially available silica microspheres and the neat MOF CIM-80(Al), demonstrating the advantages of the use of MOF core-shell sorbents in D-µSPE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA