Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunology ; 167(4): 508-527, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35897164

RESUMO

Dopamine (DA) affects immune functions in healthy subjects (HS) and during disease by acting on D1-like (D1 and D5) and D2-like (D2, D3 and D4) dopaminergic receptors (DR); however, its effects on human polymorphonuclear leukocytes (PMN) are still poorly defined. We investigated DR expression in human PMN and the ability of DA to affect cell migration and reactive oxygen species (ROS) production. Experiments were performed on cells from HS and from patients (Pts) with bacterial infections as well, during the acute phase and after recovery. Some experiments were also performed in mice knockout (KO) for the DRD5 gene. PMN from HS express both D1-like and D2-like DR, and exposure to DA results in inhibition of activation-induced morphological changes, migration and ROS production which depend on the activation of D1-like DR. In agreement with these findings, DA inhibited migration of PMN obtained from wild-type mice, but not from DRD5KO mice. In Pts with bacterial infections, during the febrile phase D1-like DRD5 on PMN were downregulated and DA failed to affect PMN migration. Both D1-like DRD5 expression and DA-induced inhibition of PMN migration were however restored after recovery. Dopaminergic inhibition of human PMN is a novel mechanism which is likely to play a key role in the regulation of innate immunity. Evidence obtained in Pts with bacterial infections provides novel clues for the therapeutic modulation of PMN during infectious disease.


Assuntos
Infecções Bacterianas , Dopamina , Humanos , Animais , Camundongos , Neutrófilos , Espécies Reativas de Oxigênio , Receptores Dopaminérgicos , Receptores de Dopamina D5/genética
2.
J Leukoc Biol ; 104(3): 603-614, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29668114

RESUMO

This study tests the hypothesis that in isolated human polymorphonuclear leukocytes (PMN) adrenergic ligands can affect neutrophil extracellular trap (NET) formation. We have previously shown that, in PMN, adrenaline (A), through the activation of adrenergic receptors (AR), reduces stimulus-dependent cell activation; we have, therefore, planned to investigate if AR are involved in NET production. PMN were obtained from venous blood of healthy subject. The ability of adrenergic ligands to affect reactive oxygen species (ROS) production, NET production, and cell migration was investigated in cells cultured under resting conditions or after activation with N-formyl-methionyl-leucyl-phenylalanine (fMLP), LPS, or IL-8. Stimuli-induced NET production measured as ROS, microscopic evaluation, and elastase production was reverted by A and this effect was blocked by the selective ß2 -AR antagonist ICI-118,551. The stimulus-induced ROS generation and migration was prevented by A and by isoprenaline (ISO), and these effects were counteracted only by ICI-118,551 and not by the other two selective ligands for the ß1 and ß3 -AR. Finally, the presence of the ß-ARs on PMN was confirmed, by means of microscopy and flow cytometry. The data of the present study suggest that adrenergic compounds, through the interaction of mainly ß2 -AR, are able to affect neutrophil functions. These data are suggestive of a possible therapeutic role of ß2 -AR ligands (in addition to their classical use), promoting the possible therapeutic relevance of adrenergic system in the modulation of innate immunity proposing their possible use as anti-inflammatory drugs.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Células Cultivadas , Armadilhas Extracelulares/imunologia , Humanos , Neutrófilos/imunologia , Receptores Adrenérgicos beta 2/imunologia
3.
J Neuroimmune Pharmacol ; 12(4): 602-623, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28578466

RESUMO

Dopamine (DA) is a neurotransmitter in the central nervous system as well as in peripheral tissues. Emerging evidence however points to DA also as a key transmitter between the nervous system and the immune system as well as a mediator produced and released by immune cells themselves. Dopaminergic pathways have received so far extensive attention in the adaptive branch of the immune system, where they play a role in health and disease such as multiple sclerosis, rheumatoid arthritis, cancer, and Parkinson's disease. Comparatively little is known about DA and the innate immune response, although DA may affect innate immune system cells such as dendritic cells, macrophages, microglia, and neutrophils. The present review aims at providing a complete and exhaustive summary of currently available evidence about DA and innate immunity, and to become a reference for anyone potentially interested in the fields of immunology, neurosciences and pharmacology. A wide array of dopaminergic drugs is used in therapeutics for non-immune indications, such as Parkinson's disease, hyperprolactinemia, shock, hypertension, with a usually favorable therapeutic index, and they might be relatively easily repurposed for immune-mediated disease, thus leading to innovative treatments at low price, with benefit for patients as well as for the healthcare systems.


Assuntos
Dopamina/imunologia , Imunidade Inata/fisiologia , Animais , Humanos
4.
J Immunol Methods ; 443: 55-63, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28167274

RESUMO

OBJECTIVE: Sample manipulation to obtain isolated granulocytes represents a key, and often necessary, step in the in vitro studies. We investigated by the means of flow cytometry and microscopic techniques (both optical microscopy [OM] and scanning electron microscopy [SEM]), the granulocyte-endothelium adhesion and the role of sample manipulation. METHODS: By means of a co-culture method, we have analysed the adhesion of human leukocytes, originated from two different blood samples (fresh venous blood [FB] and buffy coat [BC]), to the human umbilical venous endothelial cell (HUVEC) monolayer. Cultured HUVEC were analysed for adhesion molecule expression by means of flow cytometry, while the morphological changes were evaluated by means of SEM. Cell adhesion was evaluated by means of flow cytometry and both OM and SEM. RESULTS: HUVEC expressed under resting conditions the adhesion molecules ICAM-1, VCAM-1 and E-selectin and their expression was upregulated by stimulation with TNF-α (0.1-10ng/ml) as well as with LPS (1µg/ml). SEM analysis showed that stimulation with both stimuli profoundly affect cell morphology. Flow cytometric evaluation of cell adhesion showed that the ability of cells to adhere to HUVEC monolayer was quite different in the two preparations, with the lowest adhesion for FB in all the cell subsets analysed. Finally, isolated granulocytes were able to adhere to HUVEC monolayer more than cells identified in FB or BC and the adhesion was increased during activation of HUVEC with 10ng/ml of TNF-α. CONCLUSION: Our data showed that cell manipulation necessary for the isolation of specific immune cells from whole blood profoundly affect the ability of these cells to adhere to the HUVEC monolayer although their functional properties remain unchanged.


Assuntos
Moléculas de Adesão Celular/metabolismo , Adesão Celular , Separação Celular/métodos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neutrófilos/metabolismo , Antígenos CD18/metabolismo , Adesão Celular/efeitos dos fármacos , Forma Celular , Células Cultivadas , Centrifugação com Gradiente de Concentração , Técnicas de Cocultura , Selectina E/metabolismo , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos/farmacologia , Microscopia Eletrônica de Varredura , Neutrófilos/ultraestrutura , Fenótipo , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
5.
Vasc Cell ; 6: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25053992

RESUMO

BACKGROUND: Cyclic RGD peptidomimetics containing a bifunctional diketopiperazine scaffold are a novel class of high-affinity ligands for the integrins αVß3 and αVß5. Since integrins are a promising target for the modulation of normal and pathological angiogenesis, the present study aimed at characterizing the ability of the RGD peptidomimetic cyclo[DKP-RGD] 1 proliferation, migration and network formation in human umbilical vein endothelial cells (HUVEC). METHODS: Cell viability was assessed by flow cytometry and annexin V (ANX)/propidium iodide (PI) staining. Cell proliferation was evaluated by the ELISA measurement of bromodeoxyuridine (BrdU) incorporation. Network formation by HUVEC cultured in Matrigel-coated plates was evaluated by optical microscopy and image analysis. Integrin subunit mRNA expression was assessed by real time-PCR and Akt phosphorylation by western blot analysis. RESULTS: Cyclo[DKP-RGD] 1 does not affect cell viability and proliferation either in resting conditions or in the presence of the pro-angiogenic growth factors VEGF, EGF, FGF, and IGF-I. Addition of cyclo[DKP-RGD] 1 however significantly decreased network formation induced by pro-angiogenic growth factors or by IL-8. Cyclo[DKP-RGD] 1 did not affect mRNA levels of αV, ß3 or ß5 integrin subunits, however it significantly reduced the phosphorylation of Akt. CONCLUSIONS: Cyclo[DKP-RGD] 1 can be a potential modulator of angiogenesis induced by different growth factors, possibly devoid of the adverse effects of cytotoxic RGD peptidomimetic analogues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA