Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(767): eadl3438, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356746

RESUMO

Oxidative stress has long been implicated in Parkinson's disease (PD) pathogenesis, although the sources and regulation of reactive oxygen species (ROS) production are poorly defined. Pathogenic mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are associated with increased kinase activity and a greater risk of PD. The substrates and downstream consequences of elevated LRRK2 kinase activity are still being elucidated, but overexpression of mutant LRRK2 has been associated with oxidative stress, and antioxidants reportedly mitigate LRRK2 toxicity. Here, using CRISPR-Cas9 gene-edited HEK293 cells, RAW264.7 macrophages, rat primary ventral midbrain cultures, and PD patient-derived lymphoblastoid cells, we found that elevated LRRK2 kinase activity was associated with increased ROS production and lipid peroxidation and that this was blocked by inhibitors of either LRRK2 kinase or NADPH oxidase 2 (NOX2). Oxidative stress induced by the pesticide rotenone was ameliorated by LRRK2 kinase inhibition and was absent in cells devoid of LRRK2. In a rat model of PD induced by rotenone, a LRRK2 kinase inhibitor prevented the lipid peroxidation and NOX2 activation normally seen in nigral dopaminergic neurons in this model. Mechanistically, LRRK2 kinase activity was shown to regulate phosphorylation of serine-345 in the p47phox subunit of NOX2. This, in turn, led to translocation of p47phox from the cytosol to the membrane-associated gp91phox (NOX2) subunit, activation of the NOX2 enzyme complex, and production of ROS. Thus, LRRK2 kinase activity may drive cellular ROS production in PD through the regulation of NOX2 activity.


Assuntos
Modelos Animais de Doenças , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , NADPH Oxidase 2 , Estresse Oxidativo , Doença de Parkinson , Espécies Reativas de Oxigênio , Rotenona , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Células HEK293 , Estresse Oxidativo/efeitos dos fármacos , Camundongos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Rotenona/farmacologia , Ratos , Peroxidação de Lipídeos , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Ratos Sprague-Dawley , NADPH Oxidases
2.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915558

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) that increase its kinase activity are strongly linked to genetic forms of Parkinson's disease (PD). However, the regulation of endogenous wild-type (WT) LRRK2 kinase activity remains poorly understood, despite its frequent elevation in idiopathic PD (iPD) patients. Various stressors such as mitochondrial dysfunction, lysosomal dyshomeostasis, or vesicle trafficking deficits can activate WT LRRK2 kinase, but the specific molecular mechanisms are not fully understood. We found that the production of 4-hydroxynonenal (4-HNE), a lipid hydroperoxidation end-product, is a common biochemical response to these diverse stimuli. 4-HNE forms post-translational adducts with Cys2024 and Cys2025 in the kinase activation loop of WT LRRK2, significantly increasing its kinase activity. Additionally, we discovered that the 4-HNE responsible for regulating LRRK2 is generated by the action of 15-lipoxygenase (15-LO), making 15-LO an upstream regulator of the pathogenic hyperactivation of LRRK2 kinase activity. Pharmacological inhibition or genetic ablation of 15-LO prevents 4-HNE post-translational modification of LRRK2 kinase and its subsequent pathogenic hyperactivation. Therefore, 15-LO inhibitors, or methods to lower 4-HNE levels, or the targeting of Cys2024/2025 could provide new therapeutic strategies to modulate LRRK2 kinase activity and treat PD.

3.
Curr Alzheimer Res ; 10(1): 4-10, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22950863

RESUMO

The γ-secretase complex cleaves the carboxy-terminal 99 residue (C99) fragment of the amyloid precursor protein (APP) to generate the amyloid-ß (Aß) peptide. The catalytic activity of this complex is mediated either by the presenilin- 1 (PS1) or the presenilin-2 (PS2) subunit. In vitro and in vivo studies have demonstrated that PS1-containing complexes generate more total Aß product than PS2-containing complexes, indicating greater cleavage activity by PS1- containing γ-secretase complexes at the APP γ-site. However, it remains untested whether γ-secretase cleavage at the APP -site, which precedes γ-site cleavage and produces the physiologically active APP intracellular domain (AICD), follows the same rule. Using a novel Swedish APP-GVP substrate to facilitate the parallel detection of Aß and AICD products from PS1-/-/PS2-/- cells co-transfected with either PS1 or PS2, we observed that while PS1 generates more total Aß product than PS2, consistent with published reports, PS1 and PS2 unexpectedly generate equal amounts of AICD product. We also observed that PS1 and PS2 produce equivalent amounts of Notch intracellular domain (NICD), indicating equal cleavage activity at the Notch S3-site (the corollary of the APP -site). Our findings suggest that processivity differences between PS1 and PS2 underlie the differential production of Aß peptide. Taken together these findings offer novel insights into γ- secretase biology and have important implications for therapeutically targeting γ-secretase.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Células Cultivadas , Embrião de Mamíferos , Inibidores Enzimáticos , Fibroblastos , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Fragmentos de Peptídeos , Presenilina-1/genética , Presenilina-2/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Notch/genética , Transfecção , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
4.
J Biol Chem ; 286(46): 39804-12, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21868378

RESUMO

γ-Secretase is a multiprotein intramembrane cleaving aspartyl protease (I-CLiP) that catalyzes the final cleavage of the amyloid ß precursor protein (APP) to release the amyloid ß peptide (Aß). Aß is the primary component of senile plaques in Alzheimer's disease (AD), and its mechanism of production has been studied intensely. γ-Secretase executes multiple cleavages within the transmembrane domain of APP, with cleavages producing Aß and the APP intracellular domain (AICD), referred to as γ and ε, respectively. The heterogeneous nature of the γ cleavage that produces various Aß peptides is highly relevant to AD, as increased production of Aß 1-42 is genetically and biochemically linked to the development of AD. We have identified an amino acid in the juxtamembrane region of APP, lysine 624, on the basis of APP695 numbering (position 28 relative to Aß) that plays a critical role in determining the final length of Aß peptides released by γ-secretase. Mutation of this lysine to alanine (K28A) shifts the primary site of γ-secretase cleavage from 1-40 to 1-33 without significant changes to ε cleavage. These results further support a model where ε cleavage occurs first, followed by sequential proteolysis of the remaining transmembrane fragment, but extend these observations by demonstrating that charged residues at the luminal boundary of the APP transmembrane domain limit processivity of γ-secretase.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Lisina/metabolismo , Proteólise , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Células HEK293 , Humanos , Lisina/genética , Estrutura Terciária de Proteína
5.
J Neurosci ; 29(5): 1525-37, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19193899

RESUMO

The immediate-early effector gene Arc/Arg3.1 is robustly upregulated by synaptic activity associated with learning and memory. Here we show in primary cortical neuron culture that diverse stimuli induce Arc expression through new transcription. Searching for regulatory regions important for Arc transcription, we found nine DNaseI-sensitive nucleosome-depleted sites at this genomic locus. A reporter gene encompassing these sites responded to synaptic activity in an NMDA receptor-dependent manner, consistent with endogenous Arc mRNA. Responsiveness mapped to two enhancer regions approximately 6.5 kb and approximately 1.4 kb upstream of Arc. We dissected these regions further and found that the proximal enhancer contains a functional and conserved "Zeste-like" response element that binds a putative novel nuclear protein in neurons. Therefore, activity regulates Arc transcription partly by a novel signaling pathway. We also found that the distal enhancer has a functional and highly conserved serum response element. This element binds serum response factor, which is recruited by synaptic activity to regulate Arc. Thus, Arc is the first target of serum response factor that functions at synapses to mediate plasticity.


Assuntos
Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica/fisiologia , Proteínas Imediatamente Precoces/biossíntese , Proteínas Imediatamente Precoces/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fator de Resposta Sérica/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Células Cultivadas , Proteínas do Citoesqueleto/fisiologia , Humanos , Proteínas Imediatamente Precoces/fisiologia , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/genética , Células PC12 , Ratos
6.
Nat Neurosci ; 9(7): 887-95, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16732277

RESUMO

Learning and memory depend critically on long-term synaptic plasticity, which requires neuronal gene expression. In the prevailing view, AMPA receptors mediate fast excitatory synaptic transmission and effect short-term plasticity, but they do not directly regulate neuronal gene expression. By studying regulation of Arc, a gene required for long-term plasticity, we uncovered a new role for AMPA receptors in neuronal gene expression. Spontaneous synaptic activity or activity induced by brain-derived neurotrophic factor (BDNF) elicited Arc expression in cultures of rat cortical neurons and in organotypic brain slices. Notably, inhibiting AMPA receptors strongly potentiated activity-dependent Arc expression. We found that AMPA receptors negatively regulate Arc transcription, but not translation or stability, through a mechanism involving a pertussis toxin-sensitive G protein. These results provide insights into the activity-dependent mechanisms of Arc expression and suggest that, in addition to effecting short-term plasticity, AMPA receptors regulate genes involved in long-term plasticity.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/genética , Receptores de AMPA/fisiologia , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Northern Blotting/métodos , Western Blotting/métodos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Proteínas do Citoesqueleto/genética , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Técnicas In Vitro , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA