Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Korean J Anesthesiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653329

RESUMO

Background: Bleeding incidents during percutaneous dilatational tracheostomy are concerning, and most cases occur in patients with unrecognized and unanticipated anatomical variations in the vascular anatomy. However, the extent of this variation remains unclear. To address this knowledge gap, our study aimed to comprehensively map laryngeal vascular anatomy in a cohort of adult patients. Methods: Ultrasound assessments of the soft tissue in the neck were performed, spanning from the thyroid cartilage to the third tracheal ring and extending 2 cm laterally on both sidesperformed. We subdivided this area into 12 zones comprising four medial and eight lateral sections. A pre-planned form was used to document the presence of arteries or veins in each zone. The results are reported as odds ratios, 95% CIs, and corresponding P-values. Results: Five-hundred patients were enrolled from August 14, 2023, to November 13, 2023, at the University Hospital of Padua. Arteries and veins were identified in all investigated zones (varying from a minimum of 1.0%-46.4%). The presence of invessels progressively increased from the cricothyroid membrane to the third tracheal ring and from the midline to the paramedian laryngeal area. Conclusions: Given the prevalence of arteries and veins, particularly in areas where tracheostomies are commonly performed, we strongly advocate for routine ultrasound assessments before such procedures are performed.

2.
Pain ; 164(9): 2060-2069, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37079852

RESUMO

ABSTRACT: Chemotherapy-induced peripheral neuropathic pain (CIPNP) is an adverse effect observed in up to 80% of patients of cancer on treatment with cytostatic drugs including paclitaxel and oxaliplatin. Chemotherapy-induced peripheral neuropathic pain can be so severe that it limits dose and choice of chemotherapy and has significant negative consequences on the quality of life of survivors. Current treatment options for CIPNP are limited and unsatisfactory. TRPM3 is a calcium-permeable ion channel functionally expressed in peripheral sensory neurons involved in the detection of thermal stimuli. Here, we focus on the possible involvement of TRPM3 in acute oxaliplatin-induced mechanical allodynia and cold hypersensitivity. In vitro calcium microfluorimetry and whole-cell patch-clamp experiments showed that TRPM3 is functionally upregulated in both heterologous and homologous expression systems after acute (24 hours) oxaliplatin treatment, whereas the direct application of oxaliplatin was without effect. In vivo behavioral studies using an acute oxaliplatin model for CIPNP showed the development of cold and mechano hypersensitivity in control mice, which was lacking in TRPM3 deficient mice. In addition, the levels of protein ERK, a marker for neuronal activity, were significantly reduced in dorsal root ganglion neurons derived from TRPM3 deficient mice compared with control after oxaliplatin administration. Moreover, intraperitoneal injection of a TRPM3 antagonist, isosakuranetin, effectively reduced the oxaliplatin-induced pain behavior in response to cold and mechanical stimulation in mice with an acute form of oxaliplatin-induced peripheral neuropathy. In summary, TRPM3 represents a potential new target for the treatment of neuropathic pain in patients undergoing chemotherapy.


Assuntos
Antineoplásicos , Neuralgia , Canais de Cátion TRPM , Animais , Camundongos , Antineoplásicos/efeitos adversos , Cálcio/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Oxaliplatina/efeitos adversos
3.
Glia ; 70(11): 2157-2168, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35809029

RESUMO

Microglia, the resident macrophages of the central nervous system, are highly motile cells that support brain development, provision neuronal signaling, and protect brain cells against damage. Proper microglial functioning requires constant cell movement and morphological changes. Interestingly, the transient receptor potential vanilloid 4 (TRPV4) channel, a calcium-permeable channel, is involved in hypoosmotic morphological changes of retinal microglia and regulates temperature-dependent movement of microglial cells both in vitro and in vivo. Despite the broad functions of TRPV4 and the recent findings stating a role for TRPV4 in microglial movement, little is known about how TRPV4 modulates cytoskeletal remodeling to promote changes of microglial motility. Here we show that acute inhibition of TRPV4, but not its constitutive absence in the Trpv4 KO cells, affects the morphology and motility of microglia in vitro. Using high-end confocal imaging techniques, we show a decrease in actin-rich filopodia and tubulin dynamics upon acute inhibition of TRPV4 in vitro. Furthermore, using acute brain slices we demonstrate that Trpv4 knockout microglia display lower ramification complexity, slower process extension speed and consequently smaller surveyed area. We conclude that TRPV4 inhibition triggers a shift in cytoskeleton remodeling of microglia influencing their migration and morphology.


Assuntos
Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório , Cátions , Citoesqueleto , Microglia/fisiologia , Canais de Cátion TRPV/genética
4.
Anesthesiology ; 137(3): 341-350, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35789367

RESUMO

BACKGROUND: Retracted articles represent research withdrawn from the existing body of literature after publication. Research articles may be retracted for several reasons ranging from honest errors to intentional misconduct. They should not be used as reliable sources, and it is unclear why they are cited occasionally by other articles. This study hypothesized that several mechanisms may contribute to citing retracted literature and aimed to analyze the characteristics of articles citing retracted literature in anesthesiology and critical care. METHODS: Using the Retraction Watch database, we retrieved retracted articles on anesthesiology and intensive care medicine up to August 16, 2021, and identified the papers citing these retracted articles. A survey designed to investigate the reasons for citing these articles was sent to the corresponding authors of the citing papers. RESULTS: We identified 478 retracted articles, 220 (46%) of which were cited at least once. We contacted 1297 corresponding authors of the papers that cited these articles, 417 (30%) of whom responded to our survey and were included in the final analysis. The median number of authors in the analyzed articles was five, and the median elapsed time from retraction to citation was 3 yr. Most of the corresponding authors (372, 89%) were unaware of the retracted status of the cited article, mainly because of inadequate notification of the retraction status in journals and/or databases and the use of stored copies. CONCLUSIONS: The corresponding authors were generally unaware of the retraction of the cited article, usually because of inadequate identification of the retracted status in journals and/or web databases and the use of stored copies. Awareness of this phenomenon and rigorous control of the cited references before submitting a paper are of fundamental importance in research.


Assuntos
Anestesiologia , Publicações , Retratação de Publicação como Assunto , Má Conduta Científica , Bibliografias como Assunto , Pesquisa Biomédica/normas , Cuidados Críticos , Humanos , Publicações Periódicas como Assunto
5.
Eur Heart J ; 43(40): 4195-4207, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35822895

RESUMO

AIMS: Cardiac arrhythmias are a major factor in the occurrence of morbidity and sudden death in patients with cardiovascular disease. Disturbances of Ca2+ homeostasis in the heart contribute to the initiation and maintenance of cardiac arrhythmias. Extrasystolic increases in intracellular Ca2+ lead to delayed afterdepolarizations and triggered activity, which can result in heart rhythm abnormalities. It is being suggested that the Ca2+-activated nonselective cation channel TRPM4 is involved in the aetiology of triggered activity, but the exact contribution and in vivo significance are still unclear. METHODS AND RESULTS: In vitro electrophysiological and calcium imaging technique as well as in vivo intracardiac and telemetric electrocardiogram measurements in physiological and pathophysiological conditions were performed. In two distinct Ca2+-dependent proarrhythmic models, freely moving Trpm4-/- mice displayed a reduced burden of cardiac arrhythmias. Looking further into the specific contribution of TRPM4 to the cellular mechanism of arrhythmias, TRPM4 was found to contribute to a long-lasting Ca2+ overload-induced background current, thereby regulating cell excitability in Ca2+ overload conditions. To expand these results, a compound screening revealed meclofenamate as a potent antagonist of TRPM4. In line with the findings from Trpm4-/- mice, 10 µM meclofenamate inhibited the Ca2+ overload-induced background current in ventricular cardiomyocytes and 15 mg/kg meclofenamate suppressed catecholaminergic polymorphic ventricular tachycardia-associated arrhythmias in a TRPM4-dependent manner. CONCLUSION: The presented data establish that TRPM4 represents a novel target in the prevention and treatment of Ca2+-dependent triggered arrhythmias.


Assuntos
Canais de Cátion TRPM , Taquicardia Ventricular , Camundongos , Animais , Cálcio/metabolismo , Ácido Meclofenâmico/metabolismo , Arritmias Cardíacas , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/metabolismo
6.
Eur J Anaesthesiol ; 39(7): 591-601, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759292

RESUMO

BACKGROUND: Patients undergoing mastectomy surgery experience severe postoperative pain. Several regional techniques have been developed to reduce pain intensity but it is unclear, which of these techniques is most effective. OBJECTIVES: To synthesise direct and indirect comparisons for the relative efficacy of different regional and local analgesia techniques in the setting of unilateral mastectomy. Postoperative opioid consumption at 24 h, postoperative pain at extubation, 1, 12 and 24 h, postoperative nausea and vomiting were collected. DESIGN: Systematic review with network meta-analysis (PROSPERO:CRD42021250651). DATA SOURCE: PubMed, Scopus, the Cochrane Central Register of Controlled Trials (from inception until 7 July 2021). ELIGIBILITY CRITERIA: All randomised controlled trials investigating single-injection regional and local analgesia techniques in adult patients undergoing unilateral mastectomy were included in our study without any language or publication date restriction. RESULTS: Sixty-two included studies randomising 4074 patients and investigating nine techniques entered the analysis. All techniques were associated with less opioid consumption compared with controls The greatest mean difference [95% confidence interval (CI)] was associated with deep serratus anterior plane block: mean difference -16.1 mg (95% CI, -20.7 to -11.6). The greatest reduction in pain score was associated with the interpectoral-pecto-serratus plane block (mean difference -1.3, 95% CI, -1.6 to - 1) at 12 h postoperatively, and with superficial serratus anterior plane block (mean difference -1.4, 95% CI, -2.4 to -0.5) at 24 h. Interpectoral-pectoserratus plane block resulted in the greatest statistically significant reduction in postoperative nausea/vomiting when compared with placebo/no intervention with an OR of 0.23 (95% CI, 0.13 to 0.40). CONCLUSION: All techniques were associated with superior analgesia and less opioid consumption compared with controls. No single technique was identified as superior to others. In comparison, local anaesthetic infiltration does not offer advantages over multimodal analgesia alone. TRIAL REGISTRATION: PROSPERO (CRD4202125065).


Assuntos
Analgesia , Neoplasias da Mama , Adulto , Analgesia/métodos , Analgésicos Opioides , Anestésicos Locais , Feminino , Humanos , Mastectomia/efeitos adversos , Metanálise em Rede , Dor Pós-Operatória/diagnóstico , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/prevenção & controle , Náusea e Vômito Pós-Operatórios/epidemiologia , Náusea e Vômito Pós-Operatórios/etiologia , Náusea e Vômito Pós-Operatórios/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Elife ; 102021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34190686

RESUMO

Pathological left ventricular hypertrophy (LVH) occurs in response to pressure overload and remains the single most important clinical predictor of cardiac mortality. The molecular pathways in the induction of pressure overload LVH are potential targets for therapeutic intervention. Current treatments aim to remove the pressure overload stimulus for LVH, but do not completely reverse adverse cardiac remodelling. Although numerous molecular signalling steps in the induction of LVH have been identified, the initial step by which mechanical stretch associated with cardiac pressure overload is converted into a chemical signal that initiates hypertrophic signalling remains unresolved. In this study, we show that selective deletion of transient receptor potential melastatin 4 (TRPM4) channels in mouse cardiomyocytes results in an approximately 50% reduction in the LVH induced by transverse aortic constriction. Our results suggest that TRPM4 channel is an important component of the mechanosensory signalling pathway that induces LVH in response to pressure overload and represents a potential novel therapeutic target for the prevention of pathological LVH.


Assuntos
Deleção de Genes , Hipertrofia Ventricular Esquerda/genética , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/genética , Animais , Hipertrofia Ventricular Esquerda/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Canais de Cátion TRPM/efeitos adversos , Canais de Cátion TRPM/metabolismo
8.
Sci Rep ; 11(1): 4450, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627830

RESUMO

During pregnancy, metabolic adaptations occur to maintain the balance between maternal and foetal growth, including increased insulin secretion and decreased insulin sensitivity. When the body fails to adjust, gestational diabetes mellitus develops. To gain insight in the pregnancy-induced adaptations, we applied continuous glucose monitoring via telemetric transmitters. We show that continuous glucose monitoring in conscious, non-stressed, freely moving mice throughout the full pregnancy is feasible, accurate and safe. We show that healthy mice during a full pregnancy develop adaptations in glucose homeostasis reminiscent of those in pregnant women. Furthermore, continuous glucose monitoring allows the complete analysis of all aspects of glucose excursions associated with spontaneous feeding episodes, and the thorough analysis of glycaemic variability. In conclusion, continuous glucose monitoring allows a detailed description of the glycaemic status during pregnancy, which will help to unravel specific mechanisms for gestational diabetes mellitus.


Assuntos
Glicemia/metabolismo , Diabetes Gestacional/metabolismo , Gravidez em Diabéticas/metabolismo , Animais , Automonitorização da Glicemia/métodos , Diabetes Gestacional/sangue , Feminino , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Resultado da Gravidez , Gravidez em Diabéticas/sangue
9.
Biochem Pharmacol ; 183: 114310, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130130

RESUMO

During the molecular transduction of itch, the stimulation of pruriceptors on sensory fibers leads to the activation or sensitization of ion channels, which results in a consequent depolarization of the neurons. These ion channels mostly belong to the transient receptor potential (TRP) channels, which are involved in nociception and thermosensation. In particular, TRPV1 and TRPA1 were described in the transduction of both thermal nociception as well as histaminergic and non-histaminergic itch. The thermosensitive TRPM3 plays an indispensable role in heat nociception together with TRPV1 and TRPA1. However, the role of TRPM3 in the development of pruritus has not been studied yet. Therefore, in this study we aimed at investigating the potential role of TRPM3 in the transduction of pruritus and pain by investigating itch- and nociception-related behavior of Trpm3+/+ and Trpm3-/- mice, and by studying the activation of somatosensory neurons isolated from trigeminal ganglia upon application of algogenic and pruritogenic substances. Activators of TRPM3 evoked only nocifensive responses, but not itch in Trpm3+/+ animals, and these nocifensive responses were abolished in the Trpm3-/- strain. Histamine and endogenous non-histaminergic pruritogens induced itch in both Trpm3+/+ and Trpm3-/- mice to a similar extent. Genetic deletion or pharmacological blockade diminished TRPM3 mediated Ca2+ responses of sensory neurons, but did not affect responses evoked by pruritogenic substances. Our results demonstrate that, in contrast to other thermosensitive TRP channels, TRPM3 selectively mediates nociception, but not itch sensation, and suggest that TRPM3 is a promising candidate to selectively target pain sensation.


Assuntos
Nociceptividade/fisiologia , Prurido/induzido quimicamente , Prurido/metabolismo , Canais de Cátion TRPM/deficiência , Animais , Capsaicina/toxicidade , Endotelina-1/toxicidade , Histamina/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Canais de Cátion TRPM/antagonistas & inibidores
10.
Front Immunol ; 11: 799, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435246

RESUMO

Urinary tract infections (UTI) affect a large proportion of the population, causing among other symptoms, more frequent and urgent micturition. Previous studies reported that the gram-negative bacterial wall component lipopolysaccharides (LPS) trigger acute epithelial and bladder voiding responses, but the underlying mechanisms remain unknown. The cation channel TRPV4 is implicated in the regulation of the bladder voiding. Since TRPV4 is activated by LPS in airway epithelial cells, we sought to determine whether this channel plays a role in LPS-induced responses in urothelial cells (UCs). We found that human-derived UCs display a fast increase in intracellular Ca2+ concentration upon acute application of Escherichia coli LPS. Such responses were detected also in freshly isolated mouse UCs, and found to be dependent on TRPV4, but not to require the canonical TLR4 signaling pathway of LPS detection. Confocal microscopy experiments revealed that TRPV4 is dispensable for LPS-induced nuclear translocation of NF-κB in mouse UCs. On the other hand, quantitative RT PCR determinations showed an enhanced LPS-induced production of proinflammatory cytokines in TRPV4-deficient UCs. Cystometry experiments in anesthetized wild type mice revealed that acute intravesical instillation of LPS rapidly increases voiding frequency. This effect was not observed in TRPV4-deficient animals, but was largely preserved in Tlr4 KO and Trpa1 KO mice. Our results suggest that activation of TRPV4 by LPS in UCs regulates the proinflammatory response and contributes to LPS-induced increase in voiding frequency. These findings further support the concept that TRP channels are sensors of LPS, mediating fast innate immunity mechanisms against gram-negative bacteria.


Assuntos
Cistite/imunologia , NF-kappa B/metabolismo , Canais de Cátion TRPV/metabolismo , Bexiga Urinária/imunologia , Urotélio/metabolismo , Animais , Antígenos de Bactérias/imunologia , Cálcio/metabolismo , Células Cultivadas , Humanos , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Canais de Cátion TRPV/genética , Bexiga Urinária/microbiologia , Urotélio/patologia
11.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230898

RESUMO

Endometriosis is a prevalent gynecologic disease, defined by dysfunctional endometrium-like lesions outside of the uterine cavity. These lesions are presumably established via retrograde menstruation, i.e., endometrial tissue that flows backwards during menses into the abdomen and deposits on the organs. As ongoing pain is one of the main pain symptoms of patients, an animal model that illuminates this problem is highly anticipated. In the present study, we developed and validated a rat model for ongoing endometriosis-associated pain. First, menstrual endometrial tissue was successfully generated in donor rats, as validated by gross examination, histology and qPCR. Next, endometriosis was induced in recipient animals by intraperitoneal injection of menstrual tissue. This resulted in neuro-angiogenesis as well as established endometriosis lesions, which were similar to their human counterparts, since epithelial and stromal cells were observed. Furthermore, significant differences were noted between control and endometriosis animals concerning bodyweight and posture changes, indicating the presence of ongoing pain in animals with endometriosis. In summary, a rat model for endometriosis was established that reliably mimics the human pathophysiology of endometriosis and in which signs of ongoing pain were detected, thus providing a new research tool for therapy development.


Assuntos
Endometriose/patologia , Menstruação/fisiologia , Dor/patologia , Animais , Modelos Animais de Doenças , Endometriose/diagnóstico por imagem , Endométrio/patologia , Feminino , Proteína GAP-43 , Queratinas , Ratos , Células Estromais/patologia , Vimentina
12.
Mol Cell Neurosci ; 105: 103495, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32298804

RESUMO

The vomeronasal organ (VNO), the sensory organ of the mammalian accessory olfactory system, mediates the activation of sexually dimorphic reproductive behavioral and endocrine responses in males and females. It is unclear how sexually dimorphic and state-dependent responses are generated by vomeronasal sensory neurons (VSNs). Here, we report the expression of the transient receptor potential (TRP) channel Trpm4, a Ca2+-activated monovalent cation channel, as a second TRP channel present in mouse VSNs, in addition to the diacylglycerol-sensitive Trpc2 channel. The expression of Trpm4 in the mouse VNO is sexually dimorphic and, in females, is tightly linked to their reproductive cycle. We show that Trpm4 protein expression is upregulated specifically during proestrus and estrus, when female mice are about to ovulate and become sexually active and receptive. The cyclic regulation of Trpm4 expression in female VSNs depends on ovarian sex hormones and is abolished by surgical removal of the ovaries (OVX). Trpm4 upregulation can be restored in OVX mice by systemic treatment with 17ß-estradiol, requires endogenous activity of aromatase enzyme, and is strongly reduced during late pregnancy. This cyclic regulation of Trpm4 offers a neural mechanism by which female mice could regulate the relative strength of sensory signals in their VSNs, depending on hormonal state. Trpm4 is likely to participate in sex-specific, estrous cycle-dependent and sex hormone-regulated functions of the VNO, and may serve as a previously unknown genetic substrate for dissecting mammalian sexually dimorphic cellular and behavioral responses.


Assuntos
Ovário/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPM/metabolismo , Órgão Vomeronasal/metabolismo , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Diglicerídeos/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Feminino , Masculino , Camundongos , Canais de Cátion TRPC/genética
13.
Front Physiol ; 10: 802, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316392

RESUMO

Ca2+ activated non-selective (CAN) cation channels have been described in cardiomyocytes since the advent of the patch clamp technique. It has been hypothesized that this type of ion channel contributes to the triggering of cardiac arrhythmias. TRPM4 is to date the only molecular candidate for a CAN cation channel in cardiomyocytes. Its significance for arrhythmogenesis in living animals remains, however, unclear. In this study, we have tested whether increased expression of wild-type (WT) TRPM4 augments the risk of arrhythmias in living mice. Overexpression of WT TRPM4 was achieved via tail vein injection of adeno-associated viral vector serotype 9 (AAV9) particles, which have been described to be relatively cardiac specific in mice. Subsequently, we performed ECG-measurements in freely moving mice to determine their in vivo cardiac phenotype. Though cardiac muscle was transduced with TRPM4 viral particles, the majority of viral particles accumulated in the liver. We did not observe any difference in arrhythmic incidents during baseline conditions. Instead, WT mice that overexpress TRPM4 were more vulnerable to develop premature ventricular ectopic beats during exercise-induced ß-adrenergic stress. Conduction abnormalities were rare and not more frequent in transduced mice compare to WT mice. Taken together, we provide evidence that overexpression of TRPM4 increases the susceptibility of living mice to stress-induced arrhythmias.

14.
Brain Struct Funct ; 223(8): 3557-3576, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29971514

RESUMO

Hippocampal long-term potentiation (LTP) has been extensively studied as a cellular model of learning and memory. Recently, we described a central function of the Transient Receptor Potential M4 (TRPM4) channel in hippocampal LTP in mice in vitro. Here, we used Trpm4 knock-out (Trpm4-/-) rats to scrutinize TRPM4's role in the intact brain in vivo. After having confirmed the previous in vitro findings in mice, we studied hippocampal synaptic plasticity by chronic recordings in freely moving rats, hippocampus-dependent learning by a behavioral battery and hippocampal-cortical connectivity by fMRI. The electrophysiological investigation supports an involvement of TRPM4 in LTP depending on the induction protocol. Moreover, an exhaustive analysis of the LTP kinetics point to mechanistic changes in LTP by trpm4 deletion. General behavior as measured by open field test, light-dark box and elevated plus maze was inconspicuous in Trpm4-/- rats. However, they showed a distinct deficit in spatial working and reference memory associated to the Barnes maze and T-maze test, respectively. In contrast, performance of the Trpm4-/- in the Morris water maze was unaltered. Finally, fMRI investigation of the effects of a strong LTP induction manifested BOLD responses in the ipsilateral and contralateral hippocampus and the prefrontal cortex of both groups. Yet, the initial BOLD response in the stimulated hippocampal area of Trpm4-/- was significantly enhanced compared to WT rats. Our findings at the cellular, behavioral and system level point to a relevant role for TRPM4 in specific types of hippocampal synaptic plasticity and learning but not in hippocampal-prefrontal interaction.


Assuntos
Aprendizagem/fisiologia , Potenciação de Longa Duração , Canais de Cátion TRPM/fisiologia , Animais , Mapeamento Encefálico , Potenciais Pós-Sinápticos Excitadores , Técnicas de Inativação de Genes , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/fisiologia , Ratos , Canais de Cátion TRPM/genética
15.
Eur Urol ; 74(3): 336-345, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29875065

RESUMO

BACKGROUND: Improvement of bladder emptying by modulating afferent nerve activity is an attractive therapeutic strategy for detrusor underactivity. Transient receptor potential vanilloid 4 (TRPV4) is a sensory ion channel in urothelial cells that contribute to the detection of bladder filling. OBJECTIVE: To investigate the potential benefit of intravesical TRPV4 agonists in a pelvic nerve injury rat model for detrusor underactivity. DESIGN, SETTING, AND PARTICIPANTS: Female wild-type and Trpv4 knockout rats underwent sham surgery or bilateral pelvic nerve injury (bPNI). Four weeks later, rats underwent cystometry with infusion of the TRPV4 agonist GSK1016790A. Bladders were harvested for in vitro pharmacological studies, quantitative reverse polymerase chain reaction and immunohistochemistry. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Data are expressed as median ± interquartile range. Statistical comparisons were made using the Mann-Witney U test and Wilcoxon signed rank test as appropriate. RESULTS AND LIMITATIONS: Rats with bPNI showed a phenotype characteristic of detrusor underactivity with lower-amplitude voiding contractions, decreased voiding frequency, and increased postvoid residual. Intravesical application of GSK1016790A increased voiding frequency and reduced postvoid residual in wild-type, but not Trpv4-/-, rats. In isolated bladder strips, GSK1016790A did not induce relevant contractions, indicating that the observed improvements in bladder function are the result of increased afferent signalling through TRPV4 activation, rather than a local effect on the detrusor. The altered urinary phenotype of Trpv4-/- mice was not apparent in the Trpv4-/- rat model, suggesting species-related functional variations. Our results are limited to the preclinical setting in rodents. CONCLUSIONS: Intravesical activation of TRPV4 improves bladder dysfunction after bPNI by increasing afferent signalling. PATIENT SUMMARY: We demonstrate that the sensory protein transient receptor potential vanilloid 4 (TRPV4) can be targeted to improve bladder function in animals that have iatrogenic injury to the nerves innervating the bladder. Further research is required to determine whether these results can be translated to patients with an underactive bladder.


Assuntos
Leucina/análogos & derivados , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas , Bexiga Inativa/tratamento farmacológico , Bexiga Urinária/efeitos dos fármacos , Urodinâmica/efeitos dos fármacos , Agentes Urológicos/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Leucina/farmacologia , Ratos Sprague-Dawley , Ratos Transgênicos , Recuperação de Função Fisiológica , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Bexiga Urinária/fisiopatologia , Bexiga Inativa/genética , Bexiga Inativa/metabolismo , Bexiga Inativa/fisiopatologia
16.
Nature ; 559(7713): E7, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29720653

RESUMO

In this Letter, the trace is missing in Fig. 1e. This error has been corrected online.

17.
Nature ; 555(7698): 662-666, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29539642

RESUMO

Acute pain represents a crucial alarm signal to protect us from injury. Whereas the nociceptive neurons that convey pain signals were described more than a century ago, the molecular sensors that detect noxious thermal or mechanical insults have yet to be fully identified. Here we show that acute noxious heat sensing in mice depends on a triad of transient receptor potential (TRP) ion channels: TRPM3, TRPV1, and TRPA1. We found that robust somatosensory heat responsiveness at the cellular and behavioural levels is observed only if at least one of these TRP channels is functional. However, combined genetic or pharmacological elimination of all three channels largely and selectively prevents heat responses in both isolated sensory neurons and rapidly firing C and Aδ sensory nerve fibres that innervate the skin. Strikingly, Trpv1-/-Trpm3-/-Trpa1-/- triple knockout (TKO) mice lack the acute withdrawal response to noxious heat that is necessary to avoid burn injury, while showing normal nociceptive responses to cold or mechanical stimuli and a preserved preference for moderate temperatures. These findings indicate that the initiation of the acute heat-evoked pain response in sensory nerve endings relies on three functionally redundant TRP channels, representing a fault-tolerant mechanism to avoid burn injury.


Assuntos
Temperatura Alta/efeitos adversos , Dor Nociceptiva/fisiopatologia , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Sensação Térmica/fisiologia , Animais , Queimaduras/fisiopatologia , Queimaduras/prevenção & controle , Temperatura Baixa/efeitos adversos , Feminino , Masculino , Camundongos , Camundongos Knockout , Terminações Nervosas/fisiologia , Fibras Nervosas/fisiologia , Nociceptividade/fisiologia , Células Receptoras Sensoriais/fisiologia , Pele/inervação , Pele/fisiopatologia , Canal de Cátion TRPA1/deficiência , Canal de Cátion TRPA1/genética , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Sensação Térmica/genética
19.
Nat Commun ; 8: 14733, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361903

RESUMO

Steviol glycosides (SGs), such as stevioside and rebaudioside A, are natural, non-caloric sweet-tasting organic molecules, present in extracts of the scrub plant Stevia rebaudiana, which are widely used as sweeteners in consumer foods and beverages. TRPM5 is a Ca2+-activated cation channel expressed in type II taste receptor cells and pancreatic ß-cells. Here we show that stevioside, rebaudioside A and their aglycon steviol potentiate the activity of TRPM5. We find that SGs potentiate perception of bitter, sweet and umami taste, and enhance glucose-induced insulin secretion in a Trpm5-dependent manner. Daily consumption of stevioside prevents development of high-fat-diet-induced diabetic hyperglycaemia in wild-type mice, but not in Trpm5-/- mice. These results elucidate a molecular mechanism of action of SGs and identify TRPM5 as a potential target to prevent and treat type 2 diabetes.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Glucosídeos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Edulcorantes/farmacologia , Canais de Cátion TRPM/efeitos dos fármacos , Paladar/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Feminino , Células HEK293 , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Canais de Cátion TRPM/metabolismo
20.
PLoS Negl Trop Dis ; 10(7): e0004771, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27409591

RESUMO

BACKGROUND: Sand fly saliva has been shown to have proteins with potent biological activities, salivary proteins that can be used as biomarkers of vector exposure, and salivary proteins that are candidate vaccines against different forms of leishmaniasis. Sand fly salivary gland transcriptomic approach has contributed significantly to the identification and characterization of many of these salivary proteins from important Leishmania vectors; however, sand fly vectors in some regions of the world are still neglected, as Bichromomyia olmeca (formerly known as Lutzomyia olmeca olmeca), a proven vector of Leishmania mexicana in Mexico and Central America. Despite the importance of this vector in transmitting Leishmania parasite in Mesoamerica there is no information on the repertoire of B. olmeca salivary proteins and their relationship to salivary proteins from other sand fly species. METHODS AND FINDINGS: A cDNA library of the salivary glands of wild-caught B. olmeca was constructed, sequenced, and analyzed. We identified transcripts encoding for novel salivary proteins from this sand fly species and performed a comparative analysis between B. olmeca salivary proteins and those from other sand fly species. With this new information we present an updated catalog of the salivary proteins specific to New World sand flies and salivary proteins common to all sand fly species. We also report in this work the anti-Factor Xa activity of Lofaxin, a salivary anticoagulant protein present in this sand fly species. CONCLUSIONS: This study provides information on the first transcriptome of a sand fly from Mesoamerica and adds information to the limited repertoire of salivary transcriptomes from the Americas. This comparative analysis also shows a fast degree of evolution in salivary proteins from New World sand flies as compared with Old World sand flies.


Assuntos
Variação Genética/genética , Leishmania mexicana/fisiologia , Psychodidae/genética , Proteínas e Peptídeos Salivares/metabolismo , Animais , Evolução Molecular , Regulação da Expressão Gênica/fisiologia , Biblioteca Gênica , Psychodidae/parasitologia , Proteínas e Peptídeos Salivares/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA