RESUMO
Prostate cancer (PCA) is one of the most prevalent types of male cancers. While current treatments for early-stage PCA are available, their efficacy is limited in advanced PCA, mainly due to drug resistance or low efficacy. In this context, novel valuable therapeutic opportunities may arise from the combined inhibition of histone deacetylase 6 (HDAC6) and heat shock protein 90 (Hsp90). These targets are mutually involved in the regulation of several processes in cancer cells, and their inhibition is demonstrated to provide synergistic effects against PCA. On these premises, we performed an extensive in silico virtual screening campaign on commercial compounds in search of dual inhibitors of HDAC6 and Hsp90. In vitro tests against recombinant enzymes and PCA cells with different levels of aggressiveness allowed the identification of a subset of compounds with inhibitory activity against HDAC6 and antiproliferative effects towards LNCaP and PC-3 cells. None of the candidates showed appreciable Hsp90 inhibition. However, the discovered compounds have low molecular weight and a chemical structure similar to that of potent Hsp90 blockers. This provides an opportunity for structural and medicinal chemistry optimization in order to obtain HDAC6/Hsp90 dual modulators with antiproliferative effects against prostate cancer. These findings were discussed in detail in the study.
RESUMO
Alzheimer's Disease (AD) and Parkinson's Disease (PD) represent two among the most frequent neurodegenerative diseases worldwide. A common hallmark of these pathologies is the misfolding and consequent aggregation of amyloid proteins into soluble oligomers and insoluble ß-sheet-rich fibrils, which ultimately lead to neurotoxicity and cell death. After a hundred years of research on the subject, this is the only reliable histopathological feature in our hands. Since AD and PD are diagnosed only once neuronal death and the first symptoms have appeared, the early detection of these diseases is currently impossible. At present, there is no effective drug available, and patients are left with symptomatic and inconclusive therapies. Several reasons could be associated with the lack of effective therapeutic treatments. One of the most important factors is the lack of selective probes capable of detecting, as early as possible, the most toxic amyloid species involved in the onset of these pathologies. In this regard, chemical probes able to detect and distinguish among different amyloid aggregates are urgently needed. In this article, we will review and put into perspective results from ex vivo and in vivo studies performed on compounds specifically interacting with such early species. Following a general overview on the three different amyloid proteins leading to insoluble ß-sheet-rich amyloid deposits (amyloid ß1-42 peptide, Tau, and α-synuclein), a list of the advantages and disadvantages of the approaches employed to date is discussed, with particular attention paid to the translation of fluorescence imaging into clinical applications. Furthermore, we also discuss how the progress achieved in detecting the amyloids of one neurodegenerative disease could be leveraged for research into another amyloidosis. As evidenced by a critical analysis of the state of the art, substantial work still needs to be conducted. Indeed, the early diagnosis of neurodegenerative diseases is a priority, and we believe that this review could be a useful tool for better investigating this field.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fluorescência , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Doença de Alzheimer/metabolismo , Amiloide , Proteínas Amiloidogênicas , Diagnóstico Precoce , Tomografia por Emissão de PósitronsRESUMO
Tauopathies such as Alzheimer's disease are characterized by aggregation and increased phosphorylation of the microtubule-associated protein tau. Tau's pathological changes are closely linked to neurodegeneration, making tau a prime candidate for intervention. We developed an approach to monitor pathological changes of aggregation-prone human tau in living neurons. We identified 2-phenyloxazole (PHOX) derivatives as putative polypharmacological small molecules that interact with tau and modulate tau kinases. We found that PHOX15 inhibits tau aggregation, restores tau's physiological microtubule interaction, and reduces tau phosphorylation at disease-relevant sites. Molecular dynamics simulations highlight cryptic channel-like pockets crossing tau protofilaments and suggest that PHOX15 binding reduces the protofilament's ability to adopt a PHF-like conformation by modifying a key glycine triad. Our data demonstrate that live-cell imaging of a tauopathy model enables screening of compounds that modulate tau-microtubule interaction and allows identification of a promising polypharmacological drug candidate that simultaneously inhibits tau aggregation and reduces tau phosphorylation.
Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Proteínas tau/metabolismo , Microtúbulos/metabolismo , Doença de Alzheimer/metabolismo , Citoesqueleto/metabolismo , FosforilaçãoRESUMO
Estrogen deficiency derived from inhibition of estrogen biosynthesis is a typical condition of postmenopausal women and breast cancer (BCs) patients undergoing antihormone therapy. The ensuing increase in aldosterone levels is considered to be the major cause for cardiovascular diseases (CVDs) affecting these patients. Since estrogen biosynthesis is regulated by aromatase (CYP19A1), and aldosterone biosynthesis is modulated by aldosterone synthase (CYP11B2), a dual inhibitor would allow the treatment of BC while reducing the cardiovascular risks typical of these patients. Moreover, this strategy would help overcome some of the disadvantages often observed in single-target or combination therapies. Following an in-depth analysis of a library of synthesized benzylimidazole derivatives, compound X21 was found to be a potent and selective dual inhibitor of aromatase and aldosterone synthase, with IC50 values of 2.3 and 29 nM, respectively. Remarkably, the compound showed high selectivity with respect to 11ß-hydroxylase (CYP11B1), as well as CYP3A4 and CYP1A2. When tested in cells, X21 showed potent antiproliferative activity against BC cell lines, particularly against the ER+ MCF-7 cells (IC50 of 0.26 ± 0.03 µM at 72 h), and a remarkable pro-apoptotic effect. In addition, the compound significantly inhibited mTOR phosphorylation at its IC50 concentration, thereby negatively modulating the PI3K/Akt/mTOR axis, which represents an escape for the dependency from ER signaling in BC cells. The compound was further investigated for cytotoxicity on normal cells and potential cardiotoxicity against hERG and Nav1.5 ion channels, demonstrating a safe biological profile. Overall, these assays demonstrated that the compound is potent and safe, thus constituting an excellent candidate for further evaluation.
RESUMO
Drug repurposing is a widely used approach originally developed to aid in the identification of new uses of already existing drugs outside the scope of the original medical indication [...].
Assuntos
Reposicionamento de MedicamentosRESUMO
The development of drugs for the treatment of advanced prostate cancer (PCA) remains a challenging task. In this study we have designed, synthesized and tested twenty-nine novel HDAC inhibitors based on three different zinc binding groups (trifluoromethyloxadiazole, hydroxamic acid, and 2-mercaptoacetamide). These warheads were conveniently tethered to variously substituted phenyl linkers and decorated with differently substituted pyrrolo-pyrimidine and purine cap groups. Remarkably, most of the compounds showed nanomolar inhibitory activity against HDAC6. To provide structural insights into the Structure-Activity Relationships (SAR) of the investigated compounds, docking of representative inhibitors and molecular dynamics of HDAC6-inhibitor complexes were performed. Compounds of the trifluoromethyloxadiazole and hydroxamic acid series exhibited promising anti-proliferative activities, HDAC6 targeting in PCA cells, and in vitro tumor selectivity. Representative compounds of the two series were tested for solubility, cell permeability and metabolic stability, demonstrating favorable in vitro drug-like properties. The more interesting compounds were subjected to migration assays, which revealed that compound 13 and, to a lesser extent, compound 15 inhibited the invasive behaviour of androgen-sensitive and -insensitive advanced prostate cancer cells. Compound 13 was profiled against all HDACs and found to inhibit all members of class II HDACs (except for HDAC10) and to be selective with respect to class I and class IV HDACs. Overall, compound 13 combines potent inhibitory activity and class II selectivity with favorable drug-like properties, an excellent anti-proliferative activity and marked anti-migration properties on PCA cells, making it an excellent lead candidate for further optimization.
Assuntos
Inibidores de Histona Desacetilases , Neoplasias da Próstata , Masculino , Humanos , Inibidores de Histona Desacetilases/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Purinas , Pirimidinas/farmacologia , Ácidos Hidroxâmicos , Histona DesacetilasesRESUMO
Tau is a protein characterized by large structural portions displaying extended conformational changes. Unfortunately, the accumulation of this protein into toxic aggregates in neuronal cells leads to a number of severe pathologies, collectively named tauopathies. In the last decade, significant research advancements were achieved, including a better understanding of Tau structures and their implication in different tauopathies. Interestingly, Tau is characterized by a high structural variability depending on the type of disease, the crystallization conditions, and the formation of pathologic aggregates obtained from in vitro versus ex vivo samples. In this review, we reported an up-to-date and comprehensive overview of Tau structures reported in the Protein Data Bank, with a special focus on discussing the connections between structural features, different tauopathies, different crystallization conditions, and the use of in vitro or ex vivo samples. The information reported in this article highlights very interesting links between all these aspects, which we believe may be of particular relevance for a more informed structure-based design of compounds able to modulate Tau aggregation.
Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau/metabolismo , Tauopatias/metabolismo , Conformação Molecular , Neurônios/metabolismo , Doença de Alzheimer/metabolismoRESUMO
Prostate cancer (PC) is one of the most common types of cancer in males. Although early stages of PC are generally associated with favorable outcomes, advanced phases of the disease present a significantly poorer prognosis. Moreover, currently available therapeutic options for the treatment of PC are still limited, being mainly focused on androgen deprivation therapies and being characterized by low efficacy in patients. As a consequence, there is a pressing need to identify alternative and more effective therapeutics. In this study, we performed large-scale 2D and 3D similarity analyses between compounds reported in the DrugBank database and ChEMBL molecules with reported anti-proliferative activity on various PC cell lines. The analyses included also the identification of biological targets of ligands with potent activity on PC cells, as well as investigations on the activity annotations and clinical data associated with the more relevant compounds emerging from the ligand-based similarity results. The results led to the prioritization of a set of drugs and/or clinically tested candidates potentially useful in drug repurposing against PC.
Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios/uso terapêutico , Reposicionamento de MedicamentosRESUMO
Multi-target compounds have become increasingly important for the development of safer and more effective drug candidates. In this work, we devised a combined ligand-based and structure-based multi-target repurposing strategy and applied it to a series of hexahydrocyclopenta[c]quinoline compounds synthesized previously. The in silico analyses identified human Carbonic Anhydrases (hCA) and Estrogen Receptors (ER) as top scoring candidates for dual modulation. hCA isoforms IX and XII, and ER subtypes ER⺠and/or ERß are co-expressed in various cancer cell types, including breast and prostate cancer cells. ER⺠is the primary target of anti-estrogen therapy in breast cancer, and the hCA IX isoform is a therapeutic target in triple-negative breast cancer. ERâº-mediated transcriptional programs and hCA activity in cancer cells promote favorable microenvironments for cell proliferation. Interestingly, several lines of evidence indicate that the combined modulation of these two targets may provide significant therapeutic benefits. Moving from these first results, two additional hexahydrocyclopenta[c]quinoline derivatives bearing a sulfonamide zinc binding group (hCA) and a phenolic hydroxyl (ER) pharmacophoric group placed at the appropriate locations were designed and synthesized. Interestingly, these compounds were able to directly modulate the activities of both hCA and ER targets. In cell-based assays, they inhibited proliferation of breast and prostate cancer cells with micromolar potency and cell type-selective efficacy. The compounds inhibited hCA activity with nanomolar potency and isoform-selectivity. In transactivation assays, they reduced estrogen-driven ER activity with micro-molar potency. Finally, crystal structures of the synthesized ligands in complex with the two targets revealed that the compounds bind directly to the hCA active site, as well as to the ER ligand-binding domain, providing structural explanation to the observed activity and a rationale for optimization of their dual activity. To the best of our knowledge, this work describes the design, synthesis and biological characterization of the first dual modulators of hCA and ER, laying the ground for the structure-based optimization of their multi-target activity.
Assuntos
Anidrases Carbônicas , Neoplasias da Próstata , Humanos , Masculino , Anidrases Carbônicas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Receptores de Estrogênio , Ligantes , Anidrase Carbônica IX/metabolismo , Antígenos de Neoplasias/metabolismo , Inibidores da Anidrase Carbônica/química , Microambiente TumoralRESUMO
EGFR is a protein kinase whose aberrant activity is frequently involved in the development of non-small lung cancer (NSCLC) drug resistant forms. The allosteric inhibition of this enzyme is currently one among the most attractive approaches to design and develop anticancer drugs. In a previous study, we reported the identification of a hit compound acting as type III allosteric inhibitor of the L858R/T790M double mutant EGFR. Herein, we report the design, synthesis and in vitro testing of a series of analogues of the previously identified hit with the aim of exploring the structure-activity relationships (SAR) around this scaffold. The performed analyses allowed us to identify two compounds 15 and 18 showing improved inhibition of double mutant EGFR with respect to the original hit, as well as interesting antiproliferative activity against H1975 NSCLC cancer cells expressing double mutant EGFR. The newly discovered compounds represent promising starting points for further hit-to-lead optimisation.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidores de Proteínas Quinases , Mutação , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Resistencia a Medicamentos AntineoplásicosRESUMO
Prostate cancer is the most common type of cancer in men. The disease presents good survival rates if treated at the early stages. However, the evolution of the disease in its most aggressive variant remains without effective therapeutic answers. Therefore, the identification of novel effective therapeutics is urgently needed. On these premises, we developed a series of machine learning models, based on compounds with reported highly homogeneous cell-based antiproliferative assay data, able to predict the activity of ligands towards the PC-3 and DU-145 prostate cancer cell lines. The data employed in the development of the computational models was finely-tuned according to a series of thresholds for the classification of active/inactive compounds, to the number of features to be implemented, and by using 10 different machine learning algorithms. Models' evaluation allowed us to identify the best combination of activity thresholds and ML algorithms for the classification of active compounds, achieving prediction performances with MCC values above 0.60 for PC-3 and DU-145 cells. Moreover, in silico models based on the combination of PC-3 and DU-145 data were also developed, demonstrating excellent precision performances. Finally, an analysis of the activity annotations reported for the ligands in the curated datasets were conducted, suggesting associations between cellular activity and biological targets that might be explored in the future for the design of more effective prostate cancer antiproliferative agents.
RESUMO
B-Raf is a protein kinase participating to the regulation of many biological processes in cells. Recent studies have demonstrated that this protein is frequently overactivated in human cancers, especially when it bears activating mutations. In recent years, few ATP-competitive inhibitors of B-Raf have been marketed for the treatment of melanoma and are currently under clinical evaluation on a variety of other types of cancer. Although the introduction of drugs targeting B-Raf has provided significant advances in cancer treatment, responses to such ATP-competitive inhibitors remain limited, mainly due to selectivity issues, side effects, narrow therapeutic windows, and the insurgence of drug resistance. Impressive research efforts have been made so far towards the identification of novel ATP-competitive modulators with improved efficacy against cancers driven by mutant Raf monomers and dimers, some of them showing good premises. However, several limitations could still be envisioned for these compounds, according to recent literature data. Besides, increased attentions have recently arisen around approaches based on the design of allosteric modulators, polypharmacology, PROTACs and drug repurposing for the targeting of B-Raf proteins. The design of compounds acting through such innovative mechanisms is rather challenging. However, novel valuable therapeutic opportunities can be envisioned on these drugs, as they act through innovative mechanisms in which limitations typically observed for approved ATP-competitive B-Raf inhibitors are less prone to emerge. In this article, the most recent approaches adopted for the design of non-ATP competitive inhibitors targeting B-Raf are described, discussing also on the possibilities, ligands acting through such innovative mechanisms could provide for the obtainment of more effective therapies.
Assuntos
Antineoplásicos , Melanoma , Trifosfato de Adenosina , Antineoplásicos/farmacologia , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genéticaRESUMO
Histone deacetylase (HDAC) inhibitors are highly involved in the regulation of many pharmacological responses, which results in anti-inflammatory and anti-cancer effects. In the present work, chemoinformatic analyses were performed to obtain two potent and selective aminotriazoloquinazoline-based HDAC6 inhibitors. We unexpectedly obtained an aminotriazole from a water-driven ring opening of the triazoloquinazoline scaffold. Both compounds were evaluated as HDAC6 inhibitors, resulting in subnanomolar inhibitory activity and high selectivity with respect to class I HDAC1 and HDAC8. Importantly, the compounds were about 3- and 15-fold more potent compared to the reference compound trichostatin A. Additionally, the predicted binding modes were investigated with docking. Considering that the aminotriazole scaffold has never been embedded into the chemical structure of HDAC6 inhibitors, the present study suggests that both the aminotriazoloquinazoline and aminotriazole classes of compounds could be excellent starting points for further optimization of potential anticancer compounds, introducing such novel groups into a relevant and new area of investigation.
RESUMO
Background: Drug repurposing is an alternative strategy to traditional drug discovery that aims at predicting new uses for already existing drugs or clinical candidates. Drug repurposing has many advantages over traditional drug development, such as reduced attrition rates, time and costs. This is especially the case considering that most drugs investigated for repurposing have already been assessed for their safety in clinical trials. Repurposing campaigns can also be designed for libraries of already synthesized molecules at different levels of biological experimentation, from null to in vitro and in vivo. Such an extension of the "repurposing" concept is expected to provide significant advantages for the identification of novel drugs, as the synthetic accessibility of the desired compounds is often one of the limiting factors in the traditional drug discovery pipeline. Methods: In this work, we performed a computational repurposing campaign on a library of previously synthesized oxindole-based compounds, in order to identify potential new targets for this versatile scaffold. To this aim, ligand-based approaches were firstly applied to evaluate the similarity degree of the investigated compound library, with respect to ligands extracted from the DrugBank, Protein Data Bank (PDB) and ChEMBL databases. In particular, the 2D fingerprint-based and 3D shape-based similarity profiles were evaluated and compared for the oxindole derivates. Results: The analyses predicted a set of potential candidate targets for repurposing, some of them emerging by consensus of different computational analyses. One of the identified targets, i.e., the vascular endothelial growth factor receptor 2 (VEGFR-2) kinase, was further investigated by means of docking calculations, followed by biological testing of one candidate. Conclusions: While the compound did not show potent inhibitory activity towards VEGFR-2, the study highlighted several other possibilities of therapeutically relevant targets that may be worth of consideration for drug repurposing.
RESUMO
The design of multi-target drugs acting simultaneously on multiple signaling pathways is a growing field in medicinal chemistry, especially for the treatment of complex diseases, such as cancer. Histone deacetylase 6 (HDAC6) is an established anticancer drug target involved in tumor cells transformation. Being an epigenetic enzyme at the interplay of many biological processes, HDAC6 has become an attractive target for polypharmacology studies aimed at improving the therapeutic efficacy of anticancer drugs. For example, the molecular chaperone Heat shock protein 90 (Hsp90) is a substrate of HDAC6 deacetylation, and several lines of evidence demonstrate that simultaneous inhibition of HDAC6 and Hsp90 promotes synergistic antitumor effects on different cancer cell lines, highlighting the potential benefits of developing a single molecule endowed with multi-target activity. This review will summarize the complex interplay between HDAC6 and Hsp90, providing also useful hints for multi-target drug design and discovery approaches in this field. To this end, crystallographic structures of HDAC6 and Hsp90 complexes will be extensively reviewed in light of discussing binding pockets features and pharmacophore requirements and providing useful guidelines for the design of dual inhibitors. The few examples of multi-target inhibitors obtained so far, mostly based on chimeric approaches, will be summarized and put into context. Finally, the main features of HDAC6 and Hsp90 inhibitors will be compared, and ligand- and structure-based strategies potentially useful for the development of small molecular weight dual inhibitors will be proposed and discussed.
Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/uso terapêutico , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Transdução de SinaisRESUMO
The design of multi-target ligands has become an innovative approach for the identification of effective therapeutic treatments against complex diseases, such as cancer. Recent studies have demonstrated that the combined inhibition of Hsp90 and B-Raf provides synergistic effects against several types of cancers. Moreover, it has been reported that PDHK1, which presents an ATP-binding pocket similar to that of Hsp90, plays an important role in tumor initiation, maintenance and progression, participating also to the senescence process induced by B-Raf oncogenic proteins. Based on these premises, the simultaneous inhibition of these targets may provide several benefits for the treatment of cancer. In this work, we set up a design strategy including the assembly and integration of molecular fragments known to be important for binding to the Hsp90, PDHK1 and B-Raf targets, aided by molecular docking for the selection of a set of compounds potentially able to exert Hsp90-B-Raf-PDHK1 multi-target activities. The designed compounds were synthesized and experimentally validated inâ vitro. According to the inâ vitro assays, compounds 4 a, 4 d and 4 e potently inhibited Hsp90 and moderately inhibited the PDHK1 kinase. Finally, molecular dynamics simulations were performed to provide further insights into the structural basis of their multi-target activity.
Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/uso terapêuticoRESUMO
Histone deacetylase 6 (HDAC6) is an established drug target for cancer treatment. Inhibitors of HDAC6 based on a hydroxamic acid zinc binding group (ZBG) are often associated with undesirable side effects. Herein, we describe the identification of HDAC6 inhibitors based on a completely new 3-hydroxy-isoxazole ZBG. A series of derivatives decorated with different aromatic or heteroaromatic linkers, and various cap groups were synthesised and biologically tested. In vitro tests demonstrated that some compounds are able to inhibit HDAC6 with good potency, the best candidate reaching an IC50 of 700 nM. Such good potency obtained with a completely new ZBG make these compounds particularly attractive. The effect of the most active inhibitors on the acetylation levels of histone H3 and α- tubulin and their anti-proliferative activity of DU145 cells were also investigated. Docking studies were performed to evaluate the binding mode of these new derivatives and discuss structure-activity relationships.
Assuntos
Complexos de Coordenação/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Zinco/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Zinco/químicaRESUMO
Since the approval of three hydroxamic acid-based HDAC inhibitors as anticancer drugs, such functional groups acquired even more notoriety in synthetic medicinal chemistry. The ability of hydroxamic acids (HAs) to chelate metal ions makes this moiety an attractive metal binding group-in particular, Fe(III) and Zn(II)-so that HA derivatives find wide applications as metalloenzymes inhibitors. In this minireview, we will discuss the most relevant features concerning hydroxamic acid derivatives. In a first instance, the physicochemical characteristics of HAs will be summarized; then, an exhaustive description of the most relevant methods for the introduction of such moiety into organic substrates and an overview of their uses in medicinal chemistry will be presented.
RESUMO
Tau is a highly soluble protein mainly localized at a cytoplasmic level in the neuronal cells, which plays a crucial role in the regulation of microtubule dynamic stability. Recent studies have demonstrated that several factors, such as hyperphosphorylation or alterations of Tau metabolism, may contribute to the pathological accumulation of protein aggregates, which can result in neuronal death and the onset of a number of neurological disorders called Tauopathies. At present, there are no available therapeutic remedies able to reduce Tau aggregation, nor are there any structural clues or guidelines for the rational identification of compounds preventing the accumulation of protein aggregates. To help identify the structural properties required for anti-Tau aggregation activity, we performed extensive chemoinformatics analyses on a dataset of Tau ligands reported in ChEMBL. The performed analyses allowed us to identify a set of molecular properties that are in common between known active ligands. Moreover, extensive analyses of the fragment composition of reported ligands led to the identification of chemical moieties and fragment combinations prevalent in the more active compounds. Interestingly, many of these fragments were arranged in recurring frameworks, some of which were clearly present in compounds currently under clinical investigation. This work represents the first in-depth chemoinformatics study of the molecular properties, constituting fragments and similarity profiles, of known Tau aggregation inhibitors. The datasets of compounds employed for the analyses, the identified molecular fragments and their combinations are made publicly available as supplementary material.
Assuntos
Preparações Farmacêuticas/administração & dosagem , Tauopatias/tratamento farmacológico , Proteínas tau/metabolismo , Quimioinformática/métodos , Humanos , Ligantes , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Agregados Proteicos/efeitos dos fármacos , Tauopatias/metabolismoRESUMO
A library of monosubstituted chalcones (1-17) bearing electron-donating and electron-withdrawing groups on both aromatic rings were selected. The cell viability on human tumor cell lines was evaluated first. The compounds unable to induce detectable cytotoxicity (1, 13, and 14) were tested using the monoamine oxidase (MAO) activity assay. Interestingly, they inhibit MAO-B, acting as competitive inhibitors, with 13 and 14 showing the best profiles. In particular, 13 exhibited a potency higher than that of safinamide, taken as a reference. Docking studies and crystallographic analysis showed that in human MAO-B 13 binds with the halogen-substituted aromatic ring in the entrance cavity, similar to safinamide, whereas 14 is accommodated in the opposite way. The main conclusion of this cell biology, biochemistry, and structural study is to highlights 13 as a chalcone derivative that is worth consideration for the development of novel MAO-B-selective inhibitors for the treatment of neurodegenerative diseases.