Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Cardiovasc Res ; 3: 269-282, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38974464

RESUMO

Atherosclerosis is a chronic disease of the vascular wall driven by lipid accumulation and inflammation in the intimal layer of arteries, and its main complications, myocardial infarction and stroke, are the leading cause of mortality worldwide [1], [2]. Recent studies have identified Triggering receptor expressed on myeloid cells 2 (TREM2), a lipid-sensing receptor regulating myeloid cell functions [3], to be highly expressed in macrophage foam cells in experimental and human atherosclerosis [4]. However, the role of TREM2 in atherosclerosis is not fully known. Here, we show that hematopoietic or global TREM2 deficiency increased, whereas TREM2 agonism decreased necrotic core formation in early atherosclerosis. We demonstrate that TREM2 is essential for the efferocytosis capacities of macrophages, and to the survival of lipid-laden macrophages, indicating a crucial role of TREM2 in maintaining the balance between foam cell death and clearance of dead cells in atherosclerotic lesions, thereby controlling plaque necrosis.

2.
Sci Rep ; 13(1): 16745, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798364

RESUMO

Pathophysiological response after acute myocardial infarction (AMI) is described as a three-stage model involving temporal phenotypic modifications of both immune cells and fibroblasts: a primary inflammatory phase, followed by a reparative phase and a fibrous scar maturation phase. Purinergic receptors, particularly the P2Y11 receptor, have been reported to be involved in the regulation of inflammation after ischemia and could act for the resolution of inflammation after AMI. For the first time, we characterized the immuno-inflammatory and P2Y11 expression profiles of peripheral blood mononuclear cells (PBMC) from AMI patients and analyzed the consequences of presenting these cells to cardiac fibroblasts in vitro. PBMC from 178 patients were collected at various times after reperfused ST-segment elevation AMI, from H0 to M12. Expression level of P2RY11 and genes involved in tolerogenic profile of dendritic cells and T cell polarization were evaluated by RT-PCR. P2Y11 protein expression was assessed by flow cytometry. PBMC and human cardiac fibroblasts (HCF) were cocultured and α-SMA/vimentin ratio was analyzed by flow cytometry. Within the first 48 h after AMI, expression levels of HMOX1, STAT3 and CD4 increased while IDO1 and TBX21/GATA3 ratio decreased. Concomitantly, the expression of P2RY11 increased in both T and B cells. In vitro, PBMC collected at H48 after AMI induced an increase in α-SMA/vimentin ratio in HCF. Our results suggest that human PBMC display an evolving inflammatory profile with reparative characteristics the first two days after AMI and secrete soluble mediators leading to the fibroblastic proteins modification, thus participating to myocardial fibrosis.


Assuntos
Leucócitos Mononucleares , Infarto do Miocárdio , Humanos , Leucócitos Mononucleares/metabolismo , Vimentina/metabolismo , Infarto do Miocárdio/metabolismo , Inflamação/metabolismo , Fenótipo , Fibroblastos/metabolismo
3.
Cardiovasc Res ; 119(3): 772-785, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35950218

RESUMO

AIMS: Macrophages have a critical and dual role in post-ischaemic cardiac repair, as they can foster both tissue healing and damage. Multiple subsets of tissue resident and monocyte-derived macrophages coexist in the infarcted heart, but their precise identity, temporal dynamics, and the mechanisms regulating their acquisition of discrete states are not fully understood. To address this, we used multi-modal single-cell immune profiling, combined with targeted cell depletion and macrophage fate mapping, to precisely map monocyte/macrophage transitions after experimental myocardial infarction. METHODS AND RESULTS: We performed single-cell transcriptomic and cell-surface marker profiling of circulating and cardiac immune cells in mice challenged with acute myocardial infarction, and integrated single-cell transcriptomes obtained before and at 1, 3, 5, 7, and 11 days after infarction. Using complementary strategies of CCR2+ monocyte depletion and fate mapping of tissue resident macrophages, we determined the origin of cardiac macrophage populations. The macrophage landscape of the infarcted heart was dominated by monocyte-derived cells comprising two pro-inflammatory populations defined as Isg15hi and MHCII+Il1b+, alongside non-inflammatory Trem2hi cells. Trem2hi macrophages were observed in the ischaemic area, but not in the remote viable myocardium, and comprised two subpopulations sequentially populating the heart defined as Trem2hiSpp1hi monocyte-to-macrophage intermediates, and fully differentiated Trem2hiGdf15hi macrophages. Cardiac Trem2hi macrophages showed similarities to 'lipid-associated macrophages' found in mouse models of metabolic diseases and were observed in the human heart, indicating conserved features of this macrophage state across diseases and species. Ischaemic injury induced a shift of circulating Ly6Chi monocytes towards a Chil3hi state with granulocyte-like features, but the acquisition of the Trem2hi macrophage signature occurred in the ischaemic tissue. In vitro, macrophages acquired features of the Trem2hi signature following apoptotic-cell efferocytosis. CONCLUSION: Our work provides a comprehensive map of monocyte/macrophage transitions in the ischaemic heart, constituting a valuable resource for further investigating how these cells may be harnessed and modulated to promote post-ischaemic heart repair.


Assuntos
Macrófagos , Infarto do Miocárdio , Camundongos , Humanos , Animais , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Monócitos/metabolismo , Miocárdio/metabolismo , Fagocitose , Camundongos Endogâmicos C57BL
4.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467058

RESUMO

Vascular dysfunction in cardiovascular diseases includes vasomotor response impairments, endothelial cells (ECs) activation, and smooth muscle cells (SMCs) proliferation and migration to the intima. This results in intimal hyperplasia and vessel failure. We previously reported that activation of the P2Y11 receptor (P2Y11R) in human dendritic cells, cardiofibroblasts and cardiomyocytes was protective against hypoxia/reoxygenation (HR) lesions. In this study, we investigated the role of P2Y11R signaling in vascular dysfunction. P2Y11R activity was modulated using its pharmacological agonist NF546 and antagonist NF340. Rat aortic rings were exposed to angiotensin II (AngII) and evaluated for their vasomotor response. The P2Y11R agonist NF546 reduced AngII-induced vascular dysfunction by promoting EC-dependent vasorelaxation, through an increased nitric oxide (NO) bioavailability and reduced AngII-induced H2O2 release; these effects were prevented by the use of the P2Y11R antagonist NF340. Human vascular SMCs and ECs were subjected to AngII or H/R simulation in vitro. P2Y11R agonist modulated vasoactive factors in human ECs, that is, endothelial nitric oxide synthase (eNOS) and endothelin-1, reduced SMC proliferation and prevented the switch towards a synthetic phenotype. H/R and AngII increased ECs secretome-induced SMC proliferation, an effect prevented by P2Y11R activation. Thus, our data suggest that P2Y11R activation may protect blood vessels from HR-/AngII-induced injury and reduce vascular dysfunctions. These results open the way for new vasculoprotective interventions.


Assuntos
Difosfonatos/farmacologia , Naftalenossulfonatos/farmacologia , Agonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/metabolismo , Traumatismo por Reperfusão/metabolismo , Túnica Íntima/patologia , Angiotensina II/toxicidade , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aorta/fisiopatologia , Difosfonatos/uso terapêutico , Endotelina-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiperplasia/prevenção & controle , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Naftalenossulfonatos/uso terapêutico , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Agonistas do Receptor Purinérgico P2/uso terapêutico , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/metabolismo , Vasodilatação , Água/metabolismo
5.
Eur J Pharmacol ; 876: 173060, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142768

RESUMO

Chronic inflammation is the hallmark of cardiovascular pathologies with a major role in both disease progression and occurrence of long-term complications. The massive release of ATP during the inflammatory process activates various purinergic receptors, including P2Y11. This receptor is less studied but ubiquitously expressed in all cells relevant for cardiovascular pathology: cardiomyocytes, fibroblasts, endothelial and immune cells. While several studies suggested a potential pro-inflammatory role for P2Y11 receptors, recent literature data are supportive of an anti-inflammatory profile characterized by the immunosuppression of dendritic cells, inhibition of fibroblast proliferation and of cytokines and ATP secretion. Moreover, modulation of its activity appears to mediate the positive inotropic effect of ATP and mitigate endothelial dysfunction, thus rendering this receptor a promising therapeutic target in the cardiovascular disease armamentarium. The aim of the present review is to summarize the current available knowledge on P2Y11-related purinergic signaling in the setting of inflammation and cardio-metabolic diseases.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Metabólicas/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/imunologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Fibroblastos/imunologia , Fibroblastos/metabolismo , Humanos , Inflamação , Doenças Metabólicas/complicações , Doenças Metabólicas/imunologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Receptores Purinérgicos P2/genética , Transdução de Sinais
6.
J Mol Cell Cardiol ; 121: 212-222, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30031814

RESUMO

Cardiac fibroblasts are important regulators of myocardial structure and function. Their implications in pathological processes such as Ischemia/Reperfusion are well characterized. Cardiac fibroblasts respond to stress by excessive proliferation and secretion of pro-inflammatory cytokines and other factors, e.g. ATP, leading to purinergic receptors activation. P2Y11 receptor (P2Y11R) is an ATP-sensitive GPCR playing an immunomodulatory role in human dendritic cells (DC). We hypothesized that P2Y11R stimulation modulated the pro-inflammatory responses of human cardiac fibroblasts (HCF) to Hypoxia/Reoxygenation (H/R) mainly by acting on their secretome. P2Y11R stimulation in HCF at the onset of reoxygenation significantly limited H/R-induced proliferation (-19%) and pro-inflammatory cytokines and ATP secretion (-44% and -83% respectively). Exposure of DC to HCF secretome increased their expression of CD83, CD25 and CD86, suggesting a switch from immature to mature phenotype. Under LPS stimulation, DC had a pro-inflammatory profile (high IL-12/IL-10 ratio) that was decreased by HCF secretome (-3,8-fold), indicating induction of a tolerogenic profile. Moreover, P2Y11R inhibition in HCF led to high IL-12 secretion in DC, suggesting that the immunomodulatory effect of HCF secretome is P2Y11R-dependant. HCF secretome reduced H/R-induced cardiomyocytes death (-23%) through RISK pathway activation. P2Y11R inhibition in HCF induced a complete loss of HCF secretome protective effect, highlighting the cardioprotective role of P2Y11R. Our data demonstrated paracrine interactions between HCF, cardiomyocytes and DC following H/R, suggesting a key role of HCF in the cellular responses to reperfusion. These results also demonstrated a beneficial role of P2Y11R in HCF during H/R and strongly support the hypothesis that P2Y11R is a modulator of I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica/genética , Miocárdio/metabolismo , Receptores Purinérgicos P2/genética , Traumatismo por Reperfusão/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Hipóxia/genética , Hipóxia/patologia , Fatores Imunológicos/metabolismo , Interleucina-12/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Comunicação Parácrina/genética , Receptores Purinérgicos P2/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
7.
Am J Transplant ; 18(8): 1904-1913, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29377506

RESUMO

We aimed to determine the role of cytomegalovirus (CMV)-infected donor cells in the development of a CMV-specific immune response in kidney transplant recipients. We assessed the CMV pp65-specific immune response by using interferon-É£ ELISPOT and dextramers in peripheral blood mononuclear cells from 115 recipients (D+R- 31, D+R + 44, D-R + 40) late after transplantation (mean 59 ± 42 months). Receiving a kidney from a D+ donor resulted in a higher number of IFN-É£-producing anti-CMV T cells (P = .004). This effect disappeared with the absence of shared HLA class I specificities between donors and recipients (P = .430). To confirm the role of donor cells in stimulating the expansion of newly developed CMV-specific CD8+ T cells after transplantation, we compared the number of HLA-A2-restricted CMV-specific CD8+ T cells in primo-infected recipients who received an HLA-A2 or non-HLA-A2 graft. The median of anti-CMV pp65 T cells restricted by HLA-A2 was very low for patients who received a non-HLA-A2 graft vs an HLA-A2 graft (300 [0-14638] vs. 17972 [222-85594] anti-CMV pp65 CD8+ T cells/million CD8+ T cells, P = .001). This adds new evidence that CMV-infected kidney donor cells present CMV peptides and drive an inflation of memory CMV-specific CD8+ T cells, likely because of frequent CMV replications within the graft.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Genes MHC Classe I/imunologia , Rejeição de Enxerto/etiologia , Transplante de Rim/efeitos adversos , Leucócitos Mononucleares/imunologia , Doadores de Tecidos , Antígenos Virais/imunologia , Estudos Transversais , Infecções por Citomegalovirus/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/imunologia , Fosfoproteínas/imunologia , Estudos Retrospectivos , Linfócitos T Citotóxicos/imunologia , Proteínas da Matriz Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA