Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 305: 114370, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968935

RESUMO

Local, regional and global targets have been set to halt marine biodiversity loss. Europe has set its own policy targets to achieve Good Environmental Status (GES) of marine ecosystems by implementing the Marine Strategy Framework Directive (MSFD) across member states. We combined an extensive dataset across five Mediterranean ecoregions including 26 Marine Protected Areas (MPAs), their reference unprotected areas, and a no-trawl case study. Our aim was to assess if MPAs reach GES, if their effects are local or can be detected at ecoregion level or up to a Mediterranean scale, and which are the ecosystem components driving GES achievement. This was undertaken by using the analytical tool NEAT (Nested Environmental status Assessment Tool), which allows an integrated assessment of the status of marine systems. We adopted an ecosystem approach by integrating data from several ecosystem components: the seagrass Posidonia oceanica, macroalgae, sea urchins and fish. Thresholds to define the GES were set by dedicated workshops and literature review. In the Western Mediterranean, most MPAs are in good/high status, with P. oceanica and fish driving this result within MPAs. However, GES is achieved only at a local level, and the Mediterranean Sea, as a whole, results in a moderate environmental status. Macroalgal forests are overall in bad condition, confirming their status at risk. The results are significantly affected by the assumption that discrete observations over small spatial scales are representative of the total extension investigated. This calls for large-scale, dedicated assessments to realistically detect environmental status changes under different conditions. Understanding MPAs effectiveness in reaching GES is crucial to assess their role as sentinel observatories of marine systems. MPAs and trawling bans can locally contribute to the attainment of GES and to the fulfillment of the MSFD objectives. Building confidence in setting thresholds between GES and non-GES, investing in long-term monitoring, increasing the spatial extent of sampling areas, rethinking and broadening the scope of complementary tools of protection (e.g., Natura 2000 Sites), are indicated as solutions to ameliorate the status of the basin.


Assuntos
Biodiversidade , Ecossistema , Animais , Conservação dos Recursos Naturais , Europa (Continente) , Peixes , Mar Mediterrâneo
2.
Mar Environ Res ; 169: 105342, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33933902

RESUMO

In coastal marine ecosystems coralline algae often create biogenic reefs. These calcareous algal reefs affect their associated invertebrate communities via diurnal oscillations in photosynthesis, respiration and calcification processes. Little is known about how these biogenic reefs function and how they will be affected by climate change. We investigated the winter response of a Mediterranean intertidal biogenic reef, Ellissolandia elongata exposed in the laboratory to reduced pH conditions (i.e. ambient pH - 0.3, RCP 8.5) together with an extreme heatwave event (+1.4 °C for 15 days). Response variables considered both the algal physiology (calcification and photosynthetic rates) and community structure of the associated invertebrates (at taxonomic and functional level). The combination of a reduced pH with a heatwave event caused Ellisolandia elongata to significantly increase photosynthetic activity. The high variability of calcification that occurred during simulated night time conditions, indicates that there is not a simple, linear relationship between these two and may indicate that it will be resilient to future conditions of climate change. In contrast, the associated fauna were particularly negatively affected by the heatwave event, which impoverished the communities as opportunistic taxa became dominant. Local increases in oxygen and pH driven by the algae can buffer the microhabitat in the algal fronds, thus favouring the survival of small invertebrates.


Assuntos
Ecossistema , Rodófitas , Animais , Mudança Climática , Recifes de Corais , Concentração de Íons de Hidrogênio , Invertebrados , Água do Mar
3.
Mar Environ Res ; 155: 104887, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072989

RESUMO

The impact of plastic debris, and in particular of microplastics (here referred as particles smaller than 5 mm) on aquatic environments has now become a topic of raising concern. Microplastics are particularly abundant in the Mediterranean Sea, potentially exerting substantial pressures on marine organisms at different levels of organization. Ingestion of microplastics has been observed in a large number of marine species. The aim of this work is to test if microplastics produce a feeding impairment in Astroides calycularis, a shallow water, habitat-forming coral endemic to the Mediterranean Sea. Our findings suggest a lack of any avoidance mechanism allowing the polyps to discern between food items and microplastics when occurring simultaneously. Moreover, polyps spend a considerable amount of time on handling microplastic particles. As a consequence, microplastics impair the feeding efficiency in A. calycularis, since polyps may not be fully able to profit from the drifting plankton aggregations. Therefore, we suggest that microplastics can cause a reduction of fitness in A. calycularis, and presumably also in other species characterized by suspension feeding strategy.


Assuntos
Antozoários , Comportamento Alimentar , Microplásticos/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Animais , Ecossistema , Monitoramento Ambiental , Mar Mediterrâneo
4.
Ecol Appl ; 30(1): e02009, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31549453

RESUMO

In the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast-moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent European Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Mudança Climática , Objetivos
5.
Sci Rep ; 9(1): 13469, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530904

RESUMO

Shallow-water marine organisms are among the first to suffer from combined effects of natural and anthropogenic drivers. The orange coral Astroides calycularis is a shallow-water bioconstructor species endemic to the Mediterranean Sea. Although raising conservation interest, also given its special position within the Dendrophylliidae, information about the threats to its health is scant. We investigated the health status of A. calycularis at five locations in northwestern Sicily along a gradient of cumulative human impact and the most probable origin of the threats to this species, including anthropogenic land-based and sea-based threats. Cumulative human impact appeared inversely related to the performance of A. calycularis at population, colony, and polyp levels. Sea-based human impacts appeared among the most likely causes of the variation observed. The reduction in polyp length can limit the reproductive performance of A. calycularis, while the decrease of percent cover and colony area is expected to impair its peculiar feeding behaviour by limiting the exploitable dimensional range of prey and, ultimately, reef functioning. This endangered habitat-forming species appeared susceptible to anthropogenic pressures, suggesting the need to re-assess its vulnerability status. Creating microprotected areas with specific restrictions to sea-based human impacts could be the best practice preserve these bioconstructions.


Assuntos
Antozoários , Ecossistema , Animais , Antozoários/anatomia & histologia , Antozoários/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Humanos , Mar Mediterrâneo , Sicília
6.
Sci Total Environ ; 677: 418-426, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31059884

RESUMO

Marine protected areas (MPAs) represent the main tool for halting the loss of marine biodiversity. However, there is increasing evidence concerning their limited capacity to reduce or eliminate some threats even within their own boundaries. Here, we analysed a Europe-wide dataset comprising 31,579 threats recorded in 1692 sites of the European Union's Natura 2000 conservation network. Focusing specifically on threats related to marine species and habitats, we found that fishing and outdoor activities were the most widespread threats reported within MPA boundaries, although some spatial heterogeneity in the distribution of threats was apparent. Our results clearly demonstrate the need to reconsider current management plans, standardise monitoring approaches and reporting, refine present threat assessments and improve knowledge of their spatial patterns within and outside MPAs in order to improve conservation capacity and outcomes.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , União Europeia , Pesqueiros , Europa (Continente)
7.
PLoS One ; 14(1): e0210659, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30645620

RESUMO

Benthic-pelagic coupling plays a pivotal role in aquatic ecosystems but the effects of fishery driven interactions on its functioning has been largely overlooked. Disentangling the benthic-pelagic links including effects of mixed fisheries, however, needs sketching a whole description of ecosystem interactions using quantitative tools. A holistic food web model has been here developed in order to understand the interplay between the benthic-pelagic coupling and mixed fisheries in a Mediterranean system such as the Strait of Sicily. The reconstruction of the food web required review and integration of a vast set of local and regional biological information from bacteria to large pelagic species that were aggregated into 72 functional groups. Fisheries were described by 18 fleet segments resulting from combination of fishing gears and fishing vessel size. The input-output analysis on the food web of energy pathways allowed identifying effects of biological and fishery components. Results showed that the structure of the Strait of Sicily food web is complex. Similarly to other Mediterranean areas, the food web of the Strait of Sicily encompasses 4.5 trophic levels (TLs) with the highest TLs reached by bluefin tuna, swordfish and large hake and largely impacted by bottom trawling and large longline. Importantly, benthic-pelagic coupling is affected by direct and indirect impacts among groups of species, fleets and fleets-species through the whole trophic spectrum of the food web. Moreover, functional groups able to move on large spatial scales or life history of which is spent between shelf and slope domains play a key role in linking subsystems together and mediate interactions in the Mediterranean mixed fisheries.


Assuntos
Ecossistema , Modelos Teóricos , Animais , Pesqueiros , Sedimentos Geológicos , Região do Mediterrâneo
8.
Mar Environ Res ; 130: 325-337, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28882387

RESUMO

Biogenic reefs, such as those produced by tube-dwelling polychaetes of the genus Sabellaria, are valuable marine habitats which are a focus of protection according to European legislation. The achievement of this goal is potentially hindered by the lack of essential empirical data, especially in the Mediterranean Sea. This study addresses some of the current knowledge gaps by quantifying and comparing multi-scale patterns of abundance and distribution of two habitat-forming species (Sabellaria alveolata and S. spinulosa) and their associated fauna along 190 km of coast on the Italian side of the Sicily Channel. While the abundance of the two sabellariids and the total number of associated taxa did not differ at any of the examined scales (from tens of centimetres to tens-100 of kilometres), the structure (composition in terms of both the identity and the relative abundance of constituting taxa) of the associated fauna and the abundance of several taxa (the polychaetes Eulalia ornata, Syllis pulvinata, S. garciai, Nereis splendida and Arabella iricolor, and the amphipods Apolochus neapolitanus, Tethylembos viguieri and Caprella acanthifera) varied among locations established ∼50-100 km apart. Syllis pulvinata also showed significant variation between sites (hundreds of metres apart), analogously to the other syllid polychaetes S. armillaris and S. gracilis, the nereidid polychaete Nereis rava, and the amphipod Gammaropsis ulrici. The largest variance of S. spinulosa, of the structure of the whole associated fauna and of 56% of taxa analysed individually occurred at the scale of replicates (metres apart), while that of the dominant bio-constructor S. alveolata and of 25% of taxa occurred at the scale of sites. The remaining 19% and the total richness of taxa showed the largest variance at the scale of locations. Present findings contribute to meet a crucial requirement of any future effective protection strategy, i.e., identifying relevant scales of variation to be included in protection schemes aiming at preserving representative samples not only of target habitats and organisms, but also of the processes driving such variability.


Assuntos
Anfípodes , Coleta de Dados , Ecossistema , Poliquetos , Animais , Biodiversidade , Monitoramento Ambiental , Mar Mediterrâneo , Dinâmica Populacional , Sicília
9.
Adv Mar Biol ; 69: 371-402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25358305

RESUMO

Fishing has been important in the Mediterranean region for many centuries and still has a central role in its economic importance and cultural heritage. A multitude of fishery-oriented marine managed areas have been implemented under a highly complex political and legislative framework to protect fishery resources and sensitive habitats from high impact uses. However, a review of the literature revealed that few data are available to support their effectiveness, except for a few studies on fishery reserves and marine reserves. In these cases, fish biomass has increased and some evidence of ecological and socioeconomic benefits has been documented. The environmental and geopolitical complexity of the Mediterranean region as well as the dominant top-down management approaches, constitute the weakest points in the spatial management of fisheries at regional level. A coordinating role of all national and supranational bodies present in the area is desirable in the near future.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Humanos , Mar Mediterrâneo , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA