Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mult Scler ; 30(6): 747-750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372030

RESUMO

BACKGROUND: Multiple studies have highlighted elevated rates of depression among individuals with Multiple Sclerosis (MS), with its associated symptoms posing a significant threat to overall well-being. Moreover, existing literature suggests a potential interconnection between depressive manifestations and the decline of physical functionalities in the context of MS. OBJECTIVE: to examine the viability of the Eye Movement Desensitization Reprocessing (EMDR) therapy protocol for the treatment of depressive disorders (DeprEND) for alleviating depression in individuals with MS. METHODS: We conducted a process-outcome study to examine the feasibilty and effectiveness DeprEND enrolling 13 individuals with MS and depressive symtpoms. Psychological and physical assessment pre-, post-intervention and 3-month follow-up were included. Pre- and post-magnetic resonance imaging (MRI) scans were conducted to analyze potential alterations in brain function. RESULTS: The EMDR DeprEND treatment showed a high level of adherence and feasibility. Significant reductions in depressive symptoms were found at post-intervention and at 3 months follow-up. No significant differences were observed in terms of physical symptoms. A significant modulation observed in parietal and premotor areas when examining negative valence stimuli post-treatment was found. CONCLUSION: for The EMDR DeprEND protocol may represent a feasible and cost-effective treatment for reducing depressive symptoms in MS patients and improving their mental well-being.


Assuntos
Depressão , Dessensibilização e Reprocessamento através dos Movimentos Oculares , Esclerose Múltipla , Humanos , Projetos Piloto , Dessensibilização e Reprocessamento através dos Movimentos Oculares/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla/terapia , Esclerose Múltipla/complicações , Esclerose Múltipla/fisiopatologia , Depressão/terapia , Depressão/etiologia , Imageamento por Ressonância Magnética , Resultado do Tratamento , Transtorno Depressivo/terapia
2.
Eur J Neurosci ; 59(5): 860-873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37077023

RESUMO

The clinical assessment of patients with disorders of consciousness (DoC) relies on the observation of behavioural responses to standardised sensory stimulation. However, several medical comorbidities may directly impair the production of reproducible and appropriate responses, thus reducing the sensitivity of behaviour-based diagnoses. One such comorbidity is akinetic mutism (AM), a rare neurological syndrome characterised by the inability to initiate volitional motor responses, sometimes associated with clinical presentations that overlap with those of DoC. In this paper, we describe the case of a patient with large bilateral mesial frontal lesions, showing prolonged behavioural unresponsiveness and severe disorganisation of electroencephalographic (EEG) background, compatible with a vegetative state/unresponsive wakefulness syndrome (VS/UWS). By applying an unprecedented multimodal battery of advanced imaging and electrophysiology-based techniques (AIE) encompassing spontaneous EEG, evoked potentials, event-related potentials, transcranial magnetic stimulation combined with EEG and structural and functional MRI, we provide the following: (i) a demonstration of the preservation of consciousness despite unresponsiveness in the context of AM, (ii) a plausible neurophysiological explanation for behavioural unresponsiveness and its subsequent recovery during rehabilitation stay and (iii) novel insights into the relationships between DoC, AM and parkinsonism. The present case offers proof-of-principle evidence supporting the clinical utility of a multimodal hierarchical workflow that combines AIEs to detect covert signs of consciousness in unresponsive patients.


Assuntos
Afasia Acinética , Terapia por Estimulação Elétrica , Humanos , Afasia Acinética/diagnóstico , Inconsciência , Estado de Consciência , Eletroencefalografia
3.
Neuroimage ; 284: 120457, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977407

RESUMO

BACKGROUND: The emotional domain is often impaired across many neurological diseases, for this reason it represents a relevant target of rehabilitation interventions. Functional changes in neural activity related to treatment can be assessed with functional MRI (fMRI) using emotion-generation tasks in longitudinal settings. Previous studies demonstrated that within-subject fMRI signal reliability can be affected by several factors such as repetition suppression, type of task and brain anatomy. However, the differential role of repetition suppression and emotional valence of the stimuli on the fMRI signal reliability and reproducibility during an emotion-generation task involving the vision of emotional pictures is yet to be determined. METHODS: Sixty-two healthy subjects were enrolled and split into two groups: group A (21 subjects, test-retest reliability on same-day and with same-task-form), group B (30 subjects, test-retest reproducibility with 4-month-interval using two equivalent-parallel forms of the task). Test-retest reliability and reproducibility of fMRI responses and patterns were evaluated separately for positive and negative emotional valence conditions in both groups. The analyses were performed voxel-wise, using the general linear model (GLM), and via a region-of-interest (ROI)-based approach, by computing the intra-class correlation coefficient (ICC) on the obtained contrasts. RESULTS: The voxel-wise GLM test yielded no significant differences for both conditions in reliability and reproducibility analyses. As to the ROI-based approach, across all areas with significant main effects of the stimuli, the reliability, as measured with ICC, was poor (<0.4) for the positive condition and ranged from poor to excellent (0.4-0.75) for the negative condition. The ICC-based reproducibility analysis, related to the comparison of two different parallel forms, yielded similar results. DISCUSSION: The voxel-wise GLM analysis failed to capture the poor reliability of fMRI signal which was instead highlighted using the ROI-based ICC analysis. The latter showed higher signal reliability for negative valence stimuli with respect to positive ones. The implementation of two parallel forms allowed to exclude neural suppression as the predominant effect causing low signal reliability, which could be instead ascribed to the employment of different neural strategies to cope with emotional stimuli over time. This is an invaluable information for a better assessment of treatment and rehabilitation effects in longitudinal studies of emotional neural processing.


Assuntos
Habituação Psicofisiológica , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Emoções/fisiologia , Mapeamento Encefálico/métodos
4.
J Neurosci Methods ; 398: 109952, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625649

RESUMO

INTRODUCTION: Studies integrating functional near-infrared spectroscopy (fNIRS) with functional MRI (fMRI) employ heterogeneous methods in defining common regions of interest in which similarities are assessed. Therefore, spatial agreement and temporal correlation may not be reproducible across studies. In the present work, we address this issue by proposing a novel method for integration and analysis of fNIRS and fMRI over the cortical surface. MATERIALS AND METHODS: Eighteen healthy volunteers (age mean±SD 30.55 ± 4.7, 7 males) performed a motor task during non-simultaneous fMRI and fNIRS acquisitions. First, fNIRS and fMRI data were integrated by projecting subject- and group-level source maps over the cortical surface mesh to define anatomically constrained functional ROIs (acfROI). Next, spatial agreement and temporal correlation were quantified as Dice Coefficient (DC) and Pearson's correlation coefficient between fNIRS-fMRI in the acfROIs. RESULTS: Subject-level results revealed moderate to substantial spatial agreement (DC range 0.43 - 0.64), confirmed at the group-level only for blood oxygenation level-dependent (BOLD) signal vs. HbO2 (0.44 - 0.69), while lack of agreement was found for BOLD vs. HbR in some instances (0.05 - 0.49). Subject-level temporal correlation was moderate to strong (0.79 - 0.85 for BOLD vs. HbO2 and -0.62 to -0.72 for BOLD vs. HbR), while an overall strong correlation was found for group-level results (0.95 - 0.98 for BOLD vs. HbO2 and -0.91 to -0.94 for BOLD vs. HbR). CONCLUSION: The proposed method directly compares fNIRS and fMRI by projecting individual source maps to the cortical surface. Our results indicate spatial and temporal correspondence between fNIRS and fMRI, and promotes the use of fNIRS when more ecological acquision settings are required, such as longitudinal monitoring of brain activity before and after rehabilitation.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Luz Próxima ao Infravermelho , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Voluntários Saudáveis
5.
Neuroimage ; 278: 120272, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437701

RESUMO

Quantitative Susceptibility Mapping (QSM) is a recent MRI-technique able to quantify the bulk magnetic susceptibility of myelin, iron, and calcium in the brain. Its variability across different acquisition parameters has prompted the need for standardisation across multiple centres and MRI vendors. However, a high level of agreement between repeated imaging acquisitions is equally important. With this study we aimed to assess the inter-scan repeatability of an optimised multi-echo GRE sequence in 28 healthy volunteers. We extracted and compared the susceptibility measures from the scan and rescan acquisitions across 7 bilateral brain regions (i.e., 14 regions of interest (ROIs)) relevant for neurodegeneration. Repeatability was first assessed while reconstructing QSM with a fixed number of echo times (i.e., 8). Excellent inter-scan repeatability was found for putamen, globus pallidus and caudate nucleus, while good performance characterised the remaining structures. An increased variability was instead noted for small ROIs like red nucleus and substantia nigra. Secondly, we assessed the impact exerted on repeatability by the number of echoes used to derive QSM maps. Results were impacted by this parameter, especially in smaller regions. Larger brain structures, on the other hand, showed more consistent performance. Nevertheless, with either 8 or 7 echoes we managed to obtain good inter-scan repeatability on almost all ROIs. These findings indicate that the designed acquisition/reconstruction protocol has wide applicability, particularly in clinical or research settings involving longitudinal acquisitions (e.g. rehabilitation studies).


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Gânglios da Base/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
6.
Phys Med ; 112: 102610, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331082

RESUMO

PURPOSE: The use of topological metrics to derive quantitative descriptors from structural connectomes is receiving increasing attention but deserves specific studies to investigate their reproducibility and variability in the clinical context. This work exploits the harmonization of diffusion-weighted acquisition for neuroimaging data performed by the Italian Neuroscience and Neurorehabilitation Network initiative to obtain normative values of topological metrics and to investigate their reproducibility and variability across centers. METHODS: Different topological metrics, at global and local level, were calculated on multishell diffusion-weighted data acquired at high-field (e.g. 3 T) Magnetic Resonance Imaging scanners in 13 different centers, following the harmonization of the acquisition protocol, on young and healthy adults. A "traveling brains" dataset acquired on a subgroup of subjects at 3 different centers was also analyzed as reference data. All data were processed following a common processing pipeline that includes data pre-processing, tractography, generation of structural connectomes and calculation of graph-based metrics. The results were evaluated both with statistical analysis of variability and consistency among sites with the traveling brains range. In addition, inter-site reproducibility was assessed in terms of intra-class correlation variability. RESULTS: The results show an inter-center and inter-subject variability of <10%, except for "clustering coefficient" (variability of 30%). Statistical analysis identifies significant differences among sites, as expected given the wide range of scanners' hardware. CONCLUSIONS: The results show low variability of connectivity topological metrics across sites running a harmonised protocol.


Assuntos
Conectoma , Adulto , Humanos , Conectoma/métodos , Reprodutibilidade dos Testes , Benchmarking , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
7.
Front Neurol ; 13: 1060699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36468066

RESUMO

Introduction: Theory of Mind (ToM) decline has been outlined in people with amnestic Mild Cognitive Impairment (aMCI), but evidence from longitudinal studies is lacking. This longitudinal study aims to investigate changes in cognitive and affective ToM performance in an aMCI sample (n = 28; 14 females, mean age = 76.54 ± 4.35). Method: Participants underwent two steps of neurocognitive evaluation, at the baseline (T1) and 12-month follow-up (T2), to obtain their global cognitive level and both affective (Reading the Mind in the Eyes test, ET) and cognitive (Strange Stories, SS) ToM profile. Then, participants were categorized into two groups based on ToM changes: people who worsened (ETΔ < 0; SSΔ < 0) and people who did not (ETΔ≥0; SSΔ≥0) at follow-up. Differences between groups in cognitive functions and ToM profiles at baseline have been investigated. Results: Our results showed that 46% of subjects worsened in affective (ET) and 28% in cognitive (SS) ToM at follow-up. People who worsened in ET reported a statistically significantly higher performance in ET at baseline (p = 0.002) but not at follow-up than people who did not worsen. In contrast, subjects who worsened in SS showed a lower Immediate Free Recall (IFR, p = 0.026) and Delayed Free Recall (DFR, p = 0.028) score of the Free and Cued Selective Reminding test at baseline and at follow-up, a lower ET (p = 0.020) baseline score, a lower SS and MMSE level at follow-up than people who not worsened. About 71% of MCI subjects showed the same trend of evolution of the Mini-Mental State Examination and SS. Variables that significantly differed between groups have been inserted in a stepwise logistic regression to pilot explore predictors of affective and cognitive ToM evolution. Logistic regression showed ET at baseline (p = 0.015) as the only significant predictor of affective ToM evolution (R2 = 0.450), while both ET (p = 0.044) and memory performance (p = 0.045) at baseline significantly predicted cognitive ToM evolution (R2 = 0.746). Discussion: In conclusion, our results support the role of affective ToM as a residual mentalizing ability in preserving the mentalizing level in people with aMCI.

8.
Phys Med ; 104: 93-100, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36379160

RESUMO

PURPOSE: Generating big-data is becoming imperative with the advent of machine learning. RIN-Neuroimaging Network addresses this need by developing harmonized protocols for multisite studies to identify quantitative MRI (qMRI) biomarkers for neurological diseases. In this context, image quality control (QC) is essential. Here, we present methods and results of how the RIN performs intra- and inter-site reproducibility of geometrical and image contrast parameters, demonstrating the relevance of such QC practice. METHODS: American College of Radiology (ACR) large and small phantoms were selected. Eighteen sites were equipped with a 3T scanner that differed by vendor, hardware/software versions, and receiver coils. The standard ACR protocol was optimized (in-plane voxel, post-processing filters, receiver bandwidth) and repeated monthly. Uniformity, ghosting, geometric accuracy, ellipse's ratio, slice thickness, and high-contrast detectability tests were performed using an automatic QC script. RESULTS: Measures were mostly within the ACR tolerance ranges for both T1- and T2-weighted acquisitions, for all scanners, regardless of vendor, coil, and signal transmission chain type. All measurements showed good reproducibility over time. Uniformity and slice thickness failed at some sites. Scanners that upgraded the signal transmission chain showed a decrease in geometric distortion along the slice encoding direction. Inter-vendor differences were observed in uniformity and geometric measurements along the slice encoding direction (i.e. ellipse's ratio). CONCLUSIONS: Use of the ACR phantoms highlighted issues that triggered interventions to correct performance at some sites and to improve the longitudinal stability of the scanners. This is relevant for establishing precision levels for future multisite studies of qMRI biomarkers.


Assuntos
Confiabilidade dos Dados , Humanos , Reprodutibilidade dos Testes
9.
Phys Med ; 103: 37-45, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36219961

RESUMO

Quantitative Susceptibility Mapping (QSM) is an MRI-based technique allowing the non-invasive quantification of iron content and myelination in the brain. The RIN - Neuroimaging Network established an optimized and harmonized protocol for QSM across ten sites with 3T MRI systems from three different vendors to enable multicentric studies. The assessment of the reproducibility of this protocol is crucial to establish susceptibility as a quantitative biomarker. In this work, we evaluated cross-vendor reproducibility in a group of six traveling brains. Then, we recruited fifty-one volunteers and measured the variability of QSM values in a cohort of healthy subjects scanned at different sites, simulating a multicentric study. Both voxelwise and Region of Interest (ROI)-based analysis on cortical and subcortical gray matter were performed. The traveling brain study yielded high structural similarity (∼0.8) and excellent reproducibility comparing maps acquired on scanners from two different vendors. Depending on the ROI, we reported a quantification error ranging from 0.001 to 0.017 ppm for the traveling brains. In the cohort of fifty-one healthy subjects scanned at nine different sites, the ROI-dependent variability of susceptibility values, of the order of 0.005-0.025 ppm, was comparable to the result of the traveling brain experiment. The harmonized QSM protocol of the RIN - Neuroimaging Network provides a reliable quantification of susceptibility in both cortical and subcortical gray matter regions and it is ready for multicentric and longitudinal clinical studies in neurological and pychiatric diseases.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Mapeamento Encefálico/métodos
10.
Biosensors (Basel) ; 12(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36005008

RESUMO

The study of brain venous drainage has gained attention due to its hypothesized link with various neurological conditions. Intracranial and neck venous flow rate may be estimated using cardiac-gated cine phase-contrast (PC)-MRI. Although previous studies showed that breathing influences the neck's venous flow, this aspect could not be studied using the conventional segmented PC-MRI since it reconstructs a single cardiac cycle. The advent of real-time PC-MRI has overcome these limitations. Using this technique, we measured the internal jugular veins and superior sagittal sinus flow rates in a group of 16 healthy subjects (12 females, median age of 23 years). Comparing forced-breathing and free-breathing, the average flow rate decreased and the respiratory modulation increased. The flow rate decrement may be due to a vasoreactive response to deep breathing. The respiratory modulation increment is due to the thoracic pump's greater effect during forced breathing compared to free breathing. These results showed that the breathing mode influences the average blood flow and its pulsations. Since effective drainage is fundamental for brain health, rehabilitative studies might use the current setup to investigate if respiratory exercises positively affect clinical variables and venous drainage.


Assuntos
Coração , Imageamento por Ressonância Magnética , Adulto , Encéfalo , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Respiração , Veias , Adulto Jovem
11.
Ther Adv Neurol Disord ; 15: 17562864221111995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899101

RESUMO

Background: Little is still known about the mid/long-term effects of coronavirus disease 2019 (COVID-19) on the brain, especially in subjects who have never been hospitalized due to the infection. In this neuroimaging exploratory study, we analyzed the medium-term effect of COVID-19 on the brain of people who recovered from COVID-19, experienced anosmia during the acute phase of the disease, and have never been hospitalized due to SARS-Co-V-2 infection. Methods: Forty-three individuals who had (COV+, n = 22) or had not (COV-, n = 21) been infected with SARS-Co-V-2 were included in the study; the two groups were age- and sex-matched and were investigated using 3T magnetic resonance imaging (MRI). Gray matter (GM) volume, white matter (WM) hyperintensity volume, WM microstrutural integrity (i.e. fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD]) and cerebral blood flow (CBF) differences between the two groups were tested with either analysis of covariance or voxel-wise analyses. Results were family wise error (FWE) corrected. Results: No significant differences between COV+ and COV- groups were observed in terms of GM volume, WM hyperintensity volume, and CBF. Conversely, local WM microstructural alterations were detected in COV+ when compared with COV- with tract-based spatial statistics. Specifically, COV+ showed lower FA (pFWE-peak = 0.035) and higher RD (pFWE-peak = 0.038) than COV- in several WM regions. Conclusion: COVID-19 may produce mid/long-term microstructural effect on the brain, even in case of mild-to-moderate disease not requiring hospitalization. Further investigation and additional follow-ups are warranted to assess if the alterations reported in this study totally recover over time. As brain alterations could increase the risk of cognitive decline, greater knowledge of their trajectories is crucial to aid neurorehabilitation treatments.

12.
Neurol Sci ; 43(9): 5383-5390, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35750948

RESUMO

BACKGROUND AND AIMS: Chronic traumatic encephalopathy (CTE) is a degenerative disease caused by repetitive traumatic brain injury (TBI). Because CTE can be definitely diagnosed only post-mortem, it would be important to explore clinical and radiological correlates of CTE and TBI. The aims of this study were to assess (1) the relationship between the neuropsychological profile of active American football players and the traumatic load; (2) whether traumatic brain injury associated with American football activity has a specific cerebral perfusion pattern; and (3) whether this perfusion pattern correlates with neuropsychological performances. METHODS: In 20 American football players [median age [25th-75th percentile] 25.0 [21.6-31.2] years, all males], we evaluated history, traumatic load and symptoms using the TraQ (Trauma Questionnaire), and cognitive performances on neuropsychological tests. Brain perfusion was estimated using arterial spin labeling MRI and compared to a group of 19 male age-matched (28.0 [24.8-32.3] years) healthy subjects. RESULTS: We found different cognitive performances between American football players stratified according to field position and career length. Linemen had poorer executive, verbal, and visual performances; a career > 7 years was associated with poorer verbal fluency performances. American football players had statistically significant reduced cerebral blood flow values in sensory-motor areas in comparison with healthy controls. Poorer neuropsychological performances correlated with lower perfusion in specific brain areas. CONCLUSIONS: Our study seems to confirm that CTE in American football players is influenced by the field position and the career length, and correlates with lower cognitive performances linked to lower perfusion in specific brain areas.


Assuntos
Lesões Encefálicas Traumáticas , Encefalopatia Traumática Crônica , Futebol Americano , Adulto , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encefalopatia Traumática Crônica/complicações , Futebol Americano/lesões , Humanos , Masculino , Testes Neuropsicológicos , Perfusão/efeitos adversos , Estados Unidos , Adulto Jovem
13.
Front Neurol ; 13: 855125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493836

RESUMO

Neuroimaging studies often lack reproducibility, one of the cardinal features of the scientific method. Multisite collaboration initiatives increase sample size and limit methodological flexibility, therefore providing the foundation for increased statistical power and generalizable results. However, multisite collaborative initiatives are inherently limited by hardware, software, and pulse and sequence design heterogeneities of both clinical and preclinical MRI scanners and the lack of benchmark for acquisition protocols, data analysis, and data sharing. We present the overarching vision that yielded to the constitution of RIN-Neuroimaging Network, a national consortium dedicated to identifying disease and subject-specific in-vivo neuroimaging biomarkers of diverse neurological and neuropsychiatric conditions. This ambitious goal needs efforts toward increasing the diagnostic and prognostic power of advanced MRI data. To this aim, 23 Italian Scientific Institutes of Hospitalization and Care (IRCCS), with technological and clinical specialization in the neurological and neuroimaging field, have gathered together. Each IRCCS is equipped with high- or ultra-high field MRI scanners (i.e., ≥3T) for clinical or preclinical research or has established expertise in MRI data analysis and infrastructure. The actions of this Network were defined across several work packages (WP). A clinical work package (WP1) defined the guidelines for a minimum standard clinical qualitative MRI assessment for the main neurological diseases. Two neuroimaging technical work packages (WP2 and WP3, for clinical and preclinical scanners) established Standard Operative Procedures for quality controls on phantoms as well as advanced harmonized quantitative MRI protocols for studying the brain of healthy human participants and wild type mice. Under FAIR principles, a web-based e-infrastructure to store and share data across sites was also implemented (WP4). Finally, the RIN translated all these efforts into a large-scale multimodal data collection in patients and animal models with dementia (i.e., case study). The RIN-Neuroimaging Network can maximize the impact of public investments in research and clinical practice acquiring data across institutes and pathologies with high-quality and highly-consistent acquisition protocols, optimizing the analysis pipeline and data sharing procedures.

14.
Front Neurosci ; 16: 818385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368253

RESUMO

Brain connectomics consists in the modeling of human brain as networks, mathematically represented as numerical connectivity matrices. However, this representation may result in difficult interpretation of the data. To overcome this limitation, graphical representation by connectograms is currently used via open-source tools, which, however, lack user-friendly interfaces and options to explore specific sub-networks. In this context, we developed SPIDER-NET (Software Package Ideal for Deriving Enhanced Representations of brain NETworks), an easy-to-use, flexible, and interactive tool for connectograms generation and sub-network exploration. This study aims to present SPIDER-NET and to test its potential impact on pilot cases. As a working example, structural connectivity (SC) was investigated with SPIDER-NET in a group of 17 healthy controls (HCs) and in two subjects with stroke injury (Case 1 and Case 2, both with a focal lesion affecting part of the right frontal lobe, insular cortex and subcortical structures). 165 parcels were determined from individual structural magnetic resonance imaging data by using the Destrieux atlas, and defined as nodes. SC matrices were derived with Diffusion Tensor Imaging tractography. SC matrices of HCs were averaged to obtain a single group matrix. SC matrices were then used as input for SPIDER-NET. First, SPIDER-NET was used to derive the connectogram of the right hemisphere of Case 1 and Case 2. Then, a sub-network of interest (i.e., including gray matter regions affected by the stroke lesions) was interactively selected and the associated connectograms were derived for Case 1, Case 2 and HCs. Finally, graph-based metrics were derived for whole-brain SC matrices of Case 1, Case 2 and HCs. The software resulted effective in representing the expected (dis) connectivity pattern in the hemisphere affected by the stroke lesion in Cases 1 and 2. Furthermore, SPIDER-NET allowed to test an a priori hypothesis by interactively extracting a sub-network of interest: Case 1 showed a sub-network connectivity pattern different from Case 2, reflecting the different clinical severity. Global and local graph-based metrics derived with SPIDER-NET were different between cases with stroke injury and HCs. The tool proved to be accessible, intuitive, and interactive in brain connectivity investigation and provided both qualitative and quantitative evidence.

15.
Rev Neurosci ; 33(2): 213-226, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34461010

RESUMO

Parkinson's disease (PD) is the second most common neurological disease affecting the elderly population. Pharmacological and surgical interventions usually employed for PD treatment show transient effectiveness and are associated with the insurgence of side effects. Therefore, motor rehabilitation has been proposed as a promising supplement in the treatment of PD, reducing the global burden of the disease and improving patients quality of life. The present systematic review aimed to critically analyse the literature concerning MRI markers of brain functional and structural response to motor rehabilitation in PD. Fourteen out of 1313 studies were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Despite the limited number of retrieved studies coupled with their heterogeneity prevent ultimate conclusions from being drawn, motor rehabilitation seems to have beneficial effects on PD as measured both with clinical outcomes and MRI derived indices. Interestingly, consistent results seem to indicate that motor rehabilitation acts via a dual mechanism of strengthening cortico-subcortical pathways, restoring movements automaticity, or activating compensatory networks such as the fronto-parietal one. The employment of more advanced and quantitative MRI methods is warranted to establish and validate standardized metrics capable of reliably determining the changes induced by rehabilitative intervention.


Assuntos
Doença de Parkinson , Idoso , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Plasticidade Neuronal , Doença de Parkinson/diagnóstico por imagem , Qualidade de Vida
16.
Soc Cogn Affect Neurosci ; 17(6): 579-589, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34748015

RESUMO

Although neural hubs of mentalizing are acknowledged, the brain mechanisms underlying mentalizing deficit, characterizing different neurological conditions, are still a matter of debate. To investigate the neural underpinning of theory of mind (ToM) deficit in multiple sclerosis (MS), a region of interest (ROI)-based resting-state fMRI study was proposed. In total, 37 MS patients (23 females, mean age = 54.08 ± 11.37 years, median Expanded Disability Status Scale = 6.00) underwent an MRI and a neuro-psychosocial examination and were compared with 20 sex-age-education matched healthy subjects. A neuroanatomical ToM model was constructed deriving 11 bilateral ROIs and then between and within-functional connectivity (FCs) were assessed to test for group differences. Correlation with psychosocial scores was also investigated. Lower ToM performance was registered for MS both in cognitive and affective ToM, significantly associated with processing speed. A disconnection between limbic-paralimbic network and prefrontal execution loops was observed. A trend of aberrant intrinsic connectivity in MS within the anterior cingulate cortex (ACC) was also reported. Finally, a correlation between cognitive ToM and intrinsic FC was detected in ACC and dorsal striatum, belonging to the limbic-paralimbic network, likely explaining the behavioral deficit in MS. The results suggest that aberrant intrinsic and extrinsic connectivity constitutes a crucial neural mechanism underlying ToM deficit in MS.


Assuntos
Mentalização , Esclerose Múltipla , Teoria da Mente , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Testes Neuropsicológicos
17.
Front Neurosci ; 15: 707675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690670

RESUMO

Background: Motor rehabilitation is routinely used in clinical practice as an effective method to reduce progressive disability gain in multiple sclerosis (MS), but rehabilitation approaches are typically unstandardized, and only few studies have investigated the impact of rehabilitation on brain neuroplasticity. Objective: To summarize and critically analyze studies applying MRI markers of functional connectivity and structural changes to assess the effect of motor rehabilitation on brain neuroplasticity in MS. Methods: Literature search was performed using PubMed and EMBASE, selecting studies having as a subject motor rehabilitation and advanced MRI techniques investigating neuroplasticity in adult patients affected by MS. Results: Seventeen out of 798 papers were selected, of which 5 applied structural MRI (4 diffusion tensor imaging, 1 volumetric measurements), 7 applied functional fMRI (5 task-related fMRI, 2 resting-state fMRI) whereas the remaining 5 applied both structural and functional imaging. Discussion: The considerable data heterogeneity and the small sample sizes characterizing the studies limit interpretation and generalization of the results. Overall, motor rehabilitation promotes clinical improvement, paralleled by positive adaptive brain changes, whose features and extent depend upon different variables, including the type of rehabilitation approach. MRI markers of functional and structural connectivity should be implemented in studies testing the efficacy of motor rehabilitation. They allow for a better understanding of neuroplastic mechanisms underlying rehabilitation-mediated clinical achievements, facilitating the identification of rehabilitation strategies tailored to patients' needs and abilities.

18.
Eur Radiol ; 31(7): 4504-4513, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33409790

RESUMO

OBJECTIVES: The strategically acquired gradient echo (STAGE) protocol, developed for 3T scanners, allows one to derive quantitative maps such as T1, T2*, proton density, and quantitative susceptibility mapping in about 5 min. Our aim was to adapt the STAGE sequences for 1.5T scanners which are still commonly used in clinical practice. Furthermore, the accuracy and repeatability of the STAGE-derived T1 estimate were tested. METHODS: Flip angle (FA) optimization was performed using a theoretical simulation by maximizing signal-to-noise ratio, contrast-to-noise ratio, and T1 precision. The FA choice was further refined with the ISMRM/NIST phantom and in vivo acquisitions. The accuracy of the T1 estimate was assessed by comparing STAGE-derived T1 values with T1 maps obtained with an inversion recovery sequence. T1 accuracy was investigated for both the phantom and in vivo data. Finally, one subject was acquired 10 times once a week and a group of 27 subjects was scanned once. The T1 coefficient of variation (COV) was computed to assess scan-rescan and physiological variability, respectively. RESULTS: The FA1,2 = 7°,38° were identified as the optimal FA pair at 1.5T. The T1 estimate errors were below 3% and 5% for phantom and in vivo measurements, respectively. COV for different tissues ranged from 1.8 to 4.8% for physiological variability, and between 0.8 and 2% for scan-rescan repeatability. CONCLUSION: The optimized STAGE protocol can provide accurate and repeatable T1 mapping along with other qualitative images and quantitative maps in about 7 min on 1.5T scanners. This study provides the groundwork to assess the role of STAGE in clinical settings. KEY POINTS: • The STAGE imaging protocol was optimized for use on 1.5T field strength scanners. • A practical STAGE protocol makes it possible to derive quantitative maps (i.e., T1, T2*, PD, and QSM) in about 7 min at 1.5T. • The T1 estimate derived from the STAGE protocol showed good accuracy and repeatability.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Simulação por Computador , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído
19.
Diagnostics (Basel) ; 10(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213074

RESUMO

Cerebral blood flow (CBF) represents the local blood supply to the brain, and it can be considered a proxy for neuronal activation. Independent component analysis (ICA) can be applied to CBF maps to derive patterns of spatial covariance across subjects. In the present study, we aimed to assess the consistency of the independent components derived from CBF maps (CBF-ICs) across a cohort of 92 healthy individuals. Moreover, we evaluated the spatial similarity of CBF-ICs with respect to resting state networks (RSNs) and vascular territories (VTs). The data were acquired on a 1.5 T scanner using arterial spin labeling (ASL) and resting state functional magnetic resonance imaging. Similarity was assessed considering the entire ASL dataset. Consistency was evaluated by splitting the dataset into subsamples according to three different criteria: (1) random split of age and sex-matched subjects, (2) elderly vs. young, and (3) males vs. females. After standard preprocessing, ICA was performed. Both consistency and similarity were assessed by visually comparing the CBF-ICs. Then, the degree of spatial overlap was quantified with Dice Similarity Coefficient (DSC). Frontal, left, and right occipital, cerebellar, and thalamic CBF-ICs were consistently identified among the subsamples, independently of age and sex, with fair to moderate overlap (0.2 < DSC ≤ 0.6). These regions are functional hubs, and their involvement in many neurodegenerative pathologies has been observed. As slight to moderate overlap (0.2< DSC < 0.5) was observed between CBF-ICs and some RSNs and VTs, CBF-ICs may mirror a combination of both functional and vascular brain properties.

20.
Front Psychiatry ; 11: 497116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061912

RESUMO

Early life adversity (ELA) in childhood is a major risk factor for borderline intellectual functioning (BIF). BIF affects both adaptive and intellectual abilities, commonly leading to school failure and to an increased risk to develop mental and social problems in the adulthood. This study aimed to investigate the neurobiological underpinnings of ELA associated with BIF in terms of global topological organization and structural connectivity and their relation with intellectual functioning. BIF (N=32) and age-matched typical development (TD, N=14) children were evaluated for intelligence quotient (IQ), behavioral competencies, and ELA. Children underwent an anatomical and diffusion-weighted MR imaging (DWI) protocol. Global brain topological organization was assessed measuring segregation and integration indexes. Moreover, structural matrices, measuring normalized number of fibers (NFn), were compared between the 2 groups using network-based statistics. Finally, a linear regression model was used to explore the relationship between network parameters and clinical measures. Results showed increased behavioral difficulties and ELA, together with decreased network integration in BIF children. Moreover, significantly lower NFn was observed in the BIF group (p=.039) in a sub-network comprising anterior and posterior cingulate, the pericallosal sulcus, the orbital frontal areas, amygdala, basal ganglia, the accumbens nucleus, and the hippocampus. Linear regression showed that NFn significantly predicted IQ (p<.0001). This study demonstrated that ELA in children with BIF is associated with a decreased information integration at the global level, and with an altered structural connectivity within the limbic system strictly related to the intellectual functioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA