Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(19): 13232-13246, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646465

RESUMO

Semi-natural habitats (SNHs) are becoming increasingly scarce in modern agricultural landscapes. This may reduce natural ecosystem services such as pest control with its putatively positive effect on crop production. In agreement with other studies, we recently reported wheat yield reductions at field borders which were linked to the type of SNH and the distance to the border. In this experimental landscape-wide study, we asked whether these yield losses have a biotic origin while analyzing fungal seed and fungal leaf pathogens, herbivory of cereal leaf beetles, and weed cover as hypothesized mediators between SNHs and yield. We established experimental winter wheat plots of a single variety within conventionally managed wheat fields at fixed distances either to a hedgerow or to an in-field kettle hole. For each plot, we recorded the fungal infection rate on seeds, fungal infection and herbivory rates on leaves, and weed cover. Using several generalized linear mixed-effects models as well as a structural equation model, we tested the effects of SNHs at a field scale (SNH type and distance to SNH) and at a landscape scale (percentage and diversity of SNHs within a 1000-m radius). In the dry year of 2016, we detected one putative biotic culprit: Weed cover was negatively associated with yield values at a 1-m and 5-m distance from the field border with a SNH. None of the fungal and insect pests, however, significantly affected yield, neither solely nor depending on type of or distance to a SNH. However, the pest groups themselves responded differently to SNH at the field scale and at the landscape scale. Our findings highlight that crop losses at field borders may be caused by biotic culprits; however, their negative impact seems weak and is putatively reduced by conventional farming practices.

2.
Biol Rev Camb Philos Soc ; 95(4): 1073-1096, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627362

RESUMO

Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual-level movement processes on community-level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro-macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile-link-generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour-based view on movement becomes important in understanding the responses of communities under ongoing environmental change.


Assuntos
Migração Animal/fisiologia , Biodiversidade , Fenômenos Ecológicos e Ambientais , Animais , Simulação por Computador , Estágios do Ciclo de Vida , Modelos Biológicos , Estações do Ano
3.
Ecol Evol ; 9(13): 7838-7848, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346444

RESUMO

Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Göttingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11%-38% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.

4.
Ecol Evol ; 9(4): 1898-1910, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847080

RESUMO

Meta-communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species-assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant-community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting.We used a system of 46 small wetlands (kettle holes)-natural small-scale freshwater habitats rarely considered in nature conservation policies-embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flat-sloped, ephemeral, frequently plowed kettle holes vs. steep-sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes.Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant-community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non-perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep-sloped, more permanent kettle holes that had a higher percentage of wind-dispersed species. In the flat kettle holes, plant-species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes.Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant-community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta-ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.

5.
Sci Rep ; 7(1): 8392, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814757

RESUMO

Models predict that vertical gradients of foliar nitrogen (N) allocation, increasing from bottom to top of plant canopies, emerge as a plastic response to optimise N utilisation for carbon assimilation. While this mechanism has been well documented in monocultures, its relevance for mixed stands of varying species richness remains poorly understood. We used 21 naturally assembled grassland communities to analyse the gradients of N in the canopy using N allocation coefficients (K N ) estimated from the distribution of N per foliar surface area (KN-F) and ground surface area (KN-G). We tested whether: 1) increasing plant species richness leads to more pronounced N gradients as indicated by higher K N -values, 2) K N is a good predictor of instantaneous net ecosystem CO2 exchange and 3) functional diversity of leaf N concentration as estimated by Rao's Q quadratic diversity metric is a good proxy of K N . Our results show a negative (for KN-G) or no relationship (for KN-F) between species richness and canopy N distribution, but emphasize a link (positive relationship) between more foliar N per ground surface area in the upper layers of the canopy (i.e. under higher KN-G) and ecosystem CO2 uptake. Rao's Q was not a good proxy for either K N .

6.
Gigascience ; 5(1): 43, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27765071

RESUMO

BACKGROUND: Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO2 and H2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). RESULTS: We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20-79 % of the daily variation range in CO2 and H2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8-17 % in commonly used stomatal conductance models. CONCLUSIONS: Our results show that circadian controls affect diurnal CO2 and H2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a 'memory' of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.


Assuntos
Dióxido de Carbono/análise , Ritmo Circadiano , Folhas de Planta/metabolismo , Água/análise , Relógios Circadianos , Ecossistema , Gossypium/fisiologia , Phaseolus/fisiologia , Fotossíntese , Estômatos de Plantas/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-17914649

RESUMO

The photoreceptor cells of the nocturnal spider Cupiennius salei were investigated by intracellular electrophysiology. (1) The responses of photoreceptor cells of posterior median (PM) and anterior median (AM) eyes to short (2 ms) light pulses showed long integration times in the dark-adapted and shorter integration times in the light-adapted state. (2) At very low light intensities, the photoreceptors responded to single photons with discrete potentials, called bumps, of high amplitude (2-20 mV). When measured in profoundly dark-adapted photoreceptor cells of the PM eyes these bumps showed an integration time of 128 +/- 35 ms (n = 7) whereas in dark-adapted photoreceptor cells of AM eyes the integration time was 84 +/- 13 ms (n = 8), indicating that the AM eyes are intrinsically faster than the PM eyes. (3) Long integration times, which improve visual reliability in dim light, and large responses to single photons in the dark-adapted state, contribute to a high visual sensitivity in Cupiennius at night. This conclusion is underlined by a calculation of sensitivity that accounts for both anatomical and physiological characteristics of the eye.


Assuntos
Adaptação à Escuridão/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Aranhas/fisiologia , Visão Ocular/fisiologia , Animais , Eletrofisiologia , Feminino , Luz , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA