Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 34(10): 1486-1498.e7, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198293

RESUMO

Late eating has been linked to obesity risk. It is unclear whether this is caused by changes in hunger and appetite, energy expenditure, or both, and whether molecular pathways in adipose tissues are involved. Therefore, we conducted a randomized, controlled, crossover trial (ClinicalTrials.gov NCT02298790) to determine the effects of late versus early eating while rigorously controlling for nutrient intake, physical activity, sleep, and light exposure. Late eating increased hunger (p < 0.0001) and altered appetite-regulating hormones, increasing waketime and 24-h ghrelin:leptin ratio (p < 0.0001 and p = 0.006, respectively). Furthermore, late eating decreased waketime energy expenditure (p = 0.002) and 24-h core body temperature (p = 0.019). Adipose tissue gene expression analyses showed that late eating altered pathways involved in lipid metabolism, e.g., p38 MAPK signaling, TGF-ß signaling, modulation of receptor tyrosine kinases, and autophagy, in a direction consistent with decreased lipolysis/increased adipogenesis. These findings show converging mechanisms by which late eating may result in positive energy balance and increased obesity risk.


Assuntos
Fome , Sobrepeso , Adulto , Apetite , Ingestão de Alimentos/fisiologia , Ingestão de Energia , Metabolismo Energético/fisiologia , Grelina/metabolismo , Humanos , Fome/fisiologia , Leptina/metabolismo , Redes e Vias Metabólicas , Obesidade/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Tirosina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Front Endocrinol (Lausanne) ; 12: 698621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394003

RESUMO

Obesity affects nearly one billion globally and can lead to life-threatening sequelae. Consequently, there is an urgent need for novel therapeutics. We have previously shown that laminin, alpha 4 (Lama4) knockout in mice leads to resistance to adipose tissue accumulation; however, the relationship between LAMA4 and obesity in humans has not been established. In this study we measured laminin-α chain and collagen mRNA expression in the subcutaneous white adipose tissue (sWAT) of mice placed on chow (RCD) or 45% high fat diet (HFD) for 8 weeks, and also in HFD mice then placed on a "weight loss" regimen (8 weeks HFD followed by 6 weeks RCD). To assess extracellular matrix (ECM) components in humans with obesity, laminin subunit alpha mRNA and protein expression was measured in sWAT biopsies of female control subjects (BMI<30) or subjects with obesity undergoing bariatric surgery at the University of Chicago Medical Center (BMI>35) both before and three months after surgery. Lama4 was significantly higher in sWAT of HFD compared to RCD mice at both the RNA and protein level (p<0.001, p<0.05 respectively). sWAT from human subjects with obesity also showed significantly higher LAMA4 mRNA (p<0.01) and LAMA4 protein expression (p<0.05) than controls. Interestingly, even though LAMA4 expression was increased in both humans and murine models of obesity, no significant difference in Lama4 or LAMA4 expression was detected following short-term weight loss in either mouse or human samples, respectively. From these results we propose a significant association between obesity and elevated LAMA4 expression in humans, as well as in mouse models of obesity. Further studies should clarify the mechanisms underlying this association to target LAMA4 effectively as a potential therapy for obesity.


Assuntos
Laminina/genética , Obesidade/genética , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/patologia , Regulação para Cima/genética , Adulto Jovem
3.
J Biol Rhythms ; 35(1): 84-97, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31668115

RESUMO

A hallmark of biology is the cyclical nature of organismal physiology driven by networks of biological, including circadian, rhythms. Unsurprisingly, disruptions of the circadian rhythms through sleep curtailment or shift work have been connected through numerous studies to positive associations with obesity, insulin resistance, and diabetes. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) measures oscillation in messenger RNA expression, an essential foundation for the study of the physiological circadian regulatory network. Primarily, measured oscillations have involved the use of reference gene normalization. However, the validation and identification of suitable reference genes is a significant challenge across different biological systems. This study focuses on adipose tissue of premenopausal, otherwise healthy, morbidly obese women voluntarily enrolled after being scheduled for laparoscopic sleeve gastrectomy surgery. Acquisition of tissue was accomplished by aspiratory needle biopsies of subcutaneous adipose tissue 1 to 2 weeks prior to surgery and 12 to 13 weeks following surgery and an in-surgery scalpel-assisted excision of mesenteric adipose tissue. Each biopsy was sterile cultured ex vivo and serially collected every 4 h over approximately 36 h. The candidate reference genes that were tested were 18S rRNA, GAPDH, HPRT1, RPII, RPL13α, and YWHAZ. Three analytic tools were used to test suitability, and the candidate reference genes were used to measure oscillation in expression of a known circadian clock element (Dbp). No gene was deemed suitable as an individual reference gene control, which indicated that the optimal reference gene set was the geometrically averaged 3-gene panel composed of YWHAZ, RPL13α, and GAPDH. These methods can be employed to identify optimal reference genes in other systems.


Assuntos
Tecido Adiposo , Ritmo Circadiano/genética , Perfilação da Expressão Gênica/normas , Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real/normas , Adulto , Ritmo Circadiano/fisiologia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Pessoa de Meia-Idade , Obesidade Mórbida , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA