Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37622866

RESUMO

The ability to measure uric acid (UA) non-enzymatically in human blood has been demonstrated through the use of a simple and efficient electrochemical method. A phytochemical extract from radish white peel extract improved the electrocatalytic performance of nickel-cobalt bimetallic oxide (NiCo2O4) during a hydrothermal process through abundant surface holes of oxides, an alteration of morphology, an excellent crystal quality, and increased Co(III) and Ni(II) chemical states. The surface structure, morphology, crystalline quality, and chemical composition were determined using a variety of analytical techniques, including powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical characterization by CV revealed a linear range of UA from 0.1 mM to 8 mM, with a detection limit of 0.005 mM and a limit of quantification (LOQ) of 0.008 mM. A study of the sensitivity of NiCo2O4 nanostructures modified on the surface to UA detection with amperometry has revealed a linear range from 0.1 mM to 4 mM for detection. High stability, repeatability, and selectivity were associated with the enhanced electrochemical performance of non-enzymatic UA sensing. A significant contribution to the full outperforming sensing characterization can be attributed to the tailoring of surface properties of NiCo2O4 nanostructures. EIS analysis revealed a low charge-transfer resistance of 114,970 Ohms that offered NiCo2O4 nanostructures prepared with 5 mL of radish white peel extract, confirming an enhanced performance of the presented non-enzymatic UA sensor. As well as testing the practicality of the UA sensor, blood samples from human beings were also tested for UA. Due to its high sensitivity, stability, selectivity, repeatability, and simplicity, the developed non-enzymatic UA sensor is ideal for monitoring UA for a wide range of concentrations in biological matrixes.


Assuntos
Nanoestruturas , Raphanus , Humanos , Ácido Úrico
2.
Sci Total Environ ; 891: 164505, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263438

RESUMO

Oil-based paint seriously threatens biodiversity due to its complex composition and biocide toxicity. Therefore, it alters the microbial diversity abundance and in modern approaches like metagenomic, a powerful tool to get insight into pollutants effect on soil microbial community abundance. Thus, present study aimed at "exploring community dynamics: cultivable and uncultivable for the microbial-mediated bioremediation of oil-based paints polluted soil from aqueous media by Plackett-Burman statistical designed conditions". The total DNA from oil-based paints polluted soil was extracted by PowerSoil DNA Isolation Kit. The 16S rDNA genes were amplified using universal primers and PCR amplicons were sequenced for analysis of metagenomes to determine the bacterial microbiome abundance. A total 133,140 sequence reads, 2857 Operational Taxonomic Units (OTUs) of 16S rRNA genes, and 30 bacterial phyla were retrieved from all the oil-based paints polluted samples (C, R498, B698 and G492) with the significant increase in Firmicutes (18.90 %, 52.39 %, 49.75 %, 44.36 %) and Actinobacteria (26.66 %, 28.93 %, 28.17 %, 14.68 %) whereas a decrease in Proteobacteria (19.53 %, 6.32 %, 9.37 %, 16.21 %), Chloroflexi (16.93 %, 8.71 %, 9.78 %, 18.17 %), and Bacteroidetes (8.96 %, 0.36 %, 0.41 %, 0.11 %) was recorded respectively. Additionally, the 100 % removal of oil-based paints (R498, B698 and G492) was achieved by the cultivable microbial consortia in laboratory settings. On the other hand for the R498 single cultivable pure isolates exhibited biodegradation potential as "PDB20, 91 %", "PDB14, 81 %", and "PDB16, 87 %" while for the blue B698, "PDB4, 86 %", "PDB20, 89 %", "PDB5, and PDB2, 80%". Moreover, in case of G492, maximum % removal was achieved with "PDB20, 93 %", "PDB5, 90 %", "PDB6, 90 %", "PDB16, 88 %", "PDB2, and PDB4, 89%". Conclusively, in comparison to R498 and B698, maximum percent removal was displayed by G492 and this might be attributed due to difference in pigment. Cultivable consortia and individual pure isolates demonstrated >80 % contribution in the % removal of oil-based paints.


Assuntos
Poluentes do Solo , Solo , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Microbiologia do Solo , Bactérias/metabolismo , Poluentes do Solo/metabolismo
3.
ACS Omega ; 7(5): 4333-4341, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155926

RESUMO

Solar-driven photocatalytic approach is an attractive, clean, and effective way for decontamination of water. In this work, visible-light-activated TiO2 nanoflakes (TNFs) and carbon-doped TiO2 nanoflakes (C-TNFs) were synthesized via a facile hydrothermal route using different carbon sources. The as-synthesized nanostructures were successfully characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), critically disclosing the anatase nature containing titanium-oxygen having flake/platelet-like morphology with ∼32 nm in size, respectively. The photocatalytic activity was characterized via the degradation of methylene blue (MB) and bacterial inactivation of Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The experimental results showed that C-TNFs significantly enhanced photocatalytic activity compared to bare TNFs. It was found that TNF nanocatalysts exhibited superior photocatalytic activity against photodegradation of MB (92.7%) and antibacterial activity (85.6%) under sunlight irradiation. In addition, reduced graphene oxide (RGO)-TNFs have a good recycling ability and are expected to be a promising candidate for photocatalytic applications under sunlight. Consequentially, the higher activity of RGO-TNF nanocatalysts under sunlight irradiation for organic degradation and bacterial inactivation implies that hydrothermal synthesis allows for the preparation of efficient and low-cost carbon-doped photocatalysts for the photodegradation of a wide range of environmental pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA