RESUMO
The integrated stress response (ISR) is a vital signaling pathway initiated by four kinases, PERK, GCN2, HRI and PKR, that ensure cellular resilience and protect cells from challenges. Here, we investigated whether increasing ISR signaling could rescue diabetes-like phenotypes in a mouse model of diet-induced obesity (DIO). We show that the orally available and clinically approved GCN2 activator halofuginone (HF) can activate the ISR in mouse tissues. We found that daily oral administration of HF increases glucose tolerance whilst reducing weight gain, insulin resistance, and serum insulin in DIO mice. Conversely, the ISR inhibitor GSK2656157, used at low doses to optimize its selectivity, aggravates glucose intolerance in DIO mice. Whilst loss of function mutations in mice and humans have revealed that PERK is the essential ISR kinase that protects from diabetes, our work demonstrates the therapeutic value of increasing ISR signaling by activating the related kinase GCN2 to reduce diabetes phenotypes in a DIO mouse model.
Assuntos
Obesidade , Fenótipo , Piperidinas , Proteínas Serina-Treonina Quinases , Quinazolinonas , Transdução de Sinais , eIF-2 Quinase , Animais , Quinazolinonas/farmacologia , Piperidinas/farmacologia , Camundongos , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Obesidade/patologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Obesidade/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos Endogâmicos C57BL , Masculino , Resistência à Insulina , Insulina/metabolismo , Insulina/sangue , Estresse Fisiológico/efeitos dos fármacos , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus/patologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/prevenção & controle , Intolerância à Glucose/tratamento farmacológico , Adenina/análogos & derivados , IndóisRESUMO
Phosphorylation of the translation initiation factor eIF2α to initiate the integrated stress response (ISR) is a vital signalling event. Protein kinases activating the ISR, including PERK and GCN2, have attracted considerable attention for drug development. Here we find that the widely used ATP-competitive inhibitors of PERK, GSK2656157, GSK2606414 and AMG44, inhibit PERK in the nanomolar range, but surprisingly activate the ISR via GCN2 at micromolar concentrations. Similarly, a PKR inhibitor, C16, also activates GCN2. Conversely, GCN2 inhibitor A92 silences its target but induces the ISR via PERK. These findings are pivotal for understanding ISR biology and its therapeutic manipulations because most preclinical studies used these inhibitors at micromolar concentrations. Reconstitution of ISR activation with recombinant proteins demonstrates that PERK and PKR inhibitors directly activate dimeric GCN2, following a Gaussian activation-inhibition curve, with activation driven by allosterically increasing GCN2 affinity for ATP. The tyrosine kinase inhibitors Neratinib and Dovitinib also activate GCN2 by increasing affinity of GCN2 for ATP. Thus, the mechanism uncovered here might be broadly relevant to ATP-competitive inhibitors and perhaps to other kinases.
Assuntos
Desenvolvimento de Medicamentos , Fator de Iniciação 2 em Eucariotos , Fosforilação , Inibição Psicológica , Trifosfato de AdenosinaRESUMO
Halofuginone (HF) is a phase 2 clinical compound that inhibits the glutamyl-prolyl-tRNA synthetase (EPRS) thereby inducing the integrated stress response (ISR). Here, we report that halofuginone indeed triggers the predicted canonical ISR adaptations, consisting of attenuation of protein synthesis and gene expression reprogramming. However, the former is surprisingly atypical and occurs to a similar magnitude in wild-type cells, cells lacking GCN2 and those incapable of phosphorylating eIF2α. Proline supplementation rescues the observed HF-induced changes indicating that they result from inhibition of EPRS. The failure of the GCN2-to-eIF2α pathway to elicit a measurable protective attenuation of translation initiation allows translation elongation defects to prevail upon HF treatment. Exploiting this vulnerability of the ISR, we show that cancer cells with increased proline dependency are more sensitive to halofuginone. This work reveals that the consequences of EPRS inhibition are more complex than anticipated and provides novel insights into ISR signaling, as well as a molecular framework to guide the targeted development of halofuginone as a therapeutic.
Assuntos
Piperidinas , Quinazolinonas , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Piperidinas/farmacologia , Prolina/metabolismo , Biossíntese de Proteínas , Quinazolinonas/farmacologiaRESUMO
Phosphorylation of the translation initiation factor eIF2α is an adaptive signaling event that is essential for cell and organismal survival from yeast to humans. It is central to the integrated stress response (ISR) that maintains cellular homeostasis in the face of threats ranging from viral infection, amino acid, oxygen, and heme deprivation to the accumulation of misfolded proteins in the endoplasmic reticulum. Phosphorylation of eIF2α has broad physiological, pathological, and therapeutic relevance. However, despite more than two decades of research and growing pharmacological interest, phosphorylation of eIF2α remains difficult to detect and quantify, because of its transient nature and because substoichiometric amounts of this modification are sufficient to profoundly reshape cellular physiology. This review aims to provide a roadmap for facilitating a robust evaluation of eIF2α phosphorylation and its downstream consequences in cells and organisms.
Assuntos
Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Fosforilação , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismoRESUMO
BACKGROUND: Tauopathies are a group of neurodegenerative diseases associated with the accumulation of misfolded tau protein. The mechanisms underpinning tau-dependent proteinopathy remain to be elucidated. A protein quality control pathway within the endoplasmic reticulum, the unfolded protein response (UPR), has been suggested as a possible pathway modulating cellular responses in a range of neurodegenerative diseases, including those associated with misfolded cytosolic tau. OBJECTIVE: In this study we investigated three different clinically defined tauopathies to establish whether these diseases are accompanied by the activation of UPR. METHODS: We used PCR and western blotting to probe for the modulation of several reliable UPR markers in mRNA and proteins extracted from three distinct tauopathies: 20 brain samples from Alzheimer's disease patients, 11 from Pick's disease, and 10 from progressive supranuclear palsy. In each disease samples from these patients were compared with equal numbers of age-matched non-demented controls. RESULTS: Our investigation showed that different markers of UPR are not changed at the late stage of any of the human tauopathies investigated. Interestingly, UPR signatures were often observed in non-demented controls. CONCLUSION: These data from late-stage human cortical tissue report an activation of UPR markers within the aged brain across all cohorts investigated and further support the emerging evidence that the accumulation of misfolded cytosolic tau does not drive a disease-associated activation of UPR.
RESUMO
Glutamate receptors of the N-methyl-D-aspartate (NMDA) family are coincident detectors of pre- and postsynaptic activity, allowing Ca2+ influx into neurons. These properties are central to neurological disease mechanisms and are proposed to be the basis of associative learning and memory. In addition to the well-characterised canonical GluN2A NMDAR isoform, large-scale open reading frames in human tissues had suggested the expression of a primate-specific short GluN2A isoform referred to as GluN2A-S. Here, we confirm the expression of both GluN2A transcripts in human and primate but not rodent brain tissue, and show that they are translated to two corresponding GluN2A proteins present in human brain. Furthermore, we demonstrate that recombinant GluN2A-S co-assembles with the obligatory NMDAR subunit GluN1 to form functional NMDA receptors. These findings suggest a more complex NMDAR repertoire in human brain than previously thought.
Assuntos
Encéfalo/metabolismo , Primatas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adulto , Idoso , Animais , Sequência de Bases , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Isoformas de Proteínas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Especificidade da Espécie , Adulto JovemRESUMO
The unfolded protein response (UPR) is commonly associated with a range of neurodegenerative diseases, and targeting UPR components has been suggested as a therapeutic strategy. The UPR surveys protein folding within the endoplasmic reticulum. However, many of the misfolded proteins that accumulate in neurodegeneration are localized so that they do not directly cause endoplasmic reticulum triggers that activate this pathway. Here, using a transgenic mouse model and primary cell cultures along with quantitative PCR, immunoblotting, and immunohistochemistry, we tested whether the UPR is induced in in vivo and in vitro murine models of tauopathy that are based on expression of mutant tauP301L We found no evidence for the UPR in the rTg4510 mouse model, in which mutant tau is transgenically expressed under the control of tetracycline-controlled transactivator protein. This observation was supported by results from acute experiments in which neuronal cultures expressed mutant tau and accumulated misfolded cytoplasmic tau aggregates but exhibited no UPR activation. These results suggest that the UPR is not induced as a response to tau misfolding and aggregation despite clear evidence for progressive cellular dysfunction and degeneration. We propose that caution is needed when evaluating the implied significance of the UPR as a critical determinant across major neurodegenerative diseases.
Assuntos
Modelos Animais de Doenças , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Tauopatias/patologia , Resposta a Proteínas não Dobradas/fisiologia , Proteínas tau/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fosforilação , Tauopatias/metabolismo , Proteínas tau/genéticaRESUMO
Neurofibrillary tangles, formed of hyperphosphorylated, misfolded tau accumulations, are a pathological hallmark of neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal dementia. The neuroanatomical localisation of tau pathology in AD brains of different disease stages suggests that tau tangle pathology is spreading throughout the brain along connected neuronal circuits. Pathogenic tau can act as a prion-like seed, inducing the misfolding of native tau and leading to disease propagation throughout the brain. However, it is not yet fully understood how tau spreads between individual neurons or brain regions. Here, we review the models for investigating tau propagation in vitro, and summarise the findings from key studies into the mechanisms of tau pathology propagation in disease.