Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(6): 061802, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491142

RESUMO

Using lattice simulations we demonstrate from first principles the existence of a nonperturbative mechanism for elementary particle mass generation in models with gauge fields, fermions, and scalars, if an exact invariance forbids power divergent fermion masses and fermionic chiral symmetries broken at UV scale are maximally restored. We show that in the Nambu-Goldstone phase a fermion mass term, unrelated to the Yukawa operator, is dynamically generated. In models with electroweak interactions weak boson masses are also generated, opening new scenarios for beyond the standard model physics.

2.
Nature ; 539(7627): 69-71, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808190

RESUMO

Unlike the electroweak sector of the standard model of particle physics, quantum chromodynamics (QCD) is surprisingly symmetric under time reversal. As there is no obvious reason for QCD being so symmetric, this phenomenon poses a theoretical problem, often referred to as the strong CP problem. The most attractive solution for this requires the existence of a new particle, the axion-a promising dark-matter candidate. Here we determine the axion mass using lattice QCD, assuming that these particles are the dominant component of dark matter. The key quantities of the calculation are the equation of state of the Universe and the temperature dependence of the topological susceptibility of QCD, a quantity that is notoriously difficult to calculate, especially in the most relevant high-temperature region (up to several gigaelectronvolts). But by splitting the vacuum into different sectors and re-defining the fermionic determinants, its controlled calculation becomes feasible. Thus, our twofold prediction helps most cosmological calculations to describe the evolution of the early Universe by using the equation of state, and may be decisive for guiding experiments looking for dark-matter axions. In the next couple of years, it should be possible to confirm or rule out post-inflation axions experimentally, depending on whether the axion mass is found to be as predicted here. Alternatively, in a pre-inflation scenario, our calculation determines the universal axionic angle that corresponds to the initial condition of our Universe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA