Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 21(1): 341, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903172

RESUMO

BACKGROUND: Fungal infections impact over 25% of the global population. For the opportunistic fungal pathogen, Cryptococcus neoformans, infection leads to cryptococcosis. In the presence of the host, disease is enabled by elaboration of sophisticated virulence determinants, including polysaccharide capsule, melanin, thermotolerance, and extracellular enzymes. Conversely, the host protects itself from fungal invasion by regulating and sequestering transition metals (e.g., iron, zinc, copper) important for microbial growth and survival. RESULTS: Here, we explore the intricate relationship between zinc availability and fungal virulence via mass spectrometry-based quantitative proteomics. We observe a core proteome along with a distinct zinc-regulated protein-level signature demonstrating a shift away from transport and ion binding under zinc-replete conditions towards transcription and metal acquisition under zinc-limited conditions. In addition, we revealed a novel connection among zinc availability, thermotolerance, as well as capsule and melanin production through the detection of a Wos2 ortholog in the secretome under replete conditions. CONCLUSIONS: Overall, we provide new biological insight into cellular remodeling at the protein level of C. neoformans under regulated zinc conditions and uncover a novel connection between zinc homeostasis and fungal virulence determinants.


Assuntos
Cryptococcus neoformans/patogenicidade , Chaperonas Moleculares/metabolismo , Proteoma/metabolismo , Secretoma/metabolismo , Zinco/metabolismo , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Melaninas/metabolismo , Chaperonas Moleculares/genética , Mutação , Proteômica , Termotolerância , Virulência/genética
2.
BMC Microbiol ; 21(1): 43, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568055

RESUMO

BACKGROUND: Microbial organisms encounter a variety of environmental conditions, including changes to metal ion availability. Metal ions play an important role in many biological processes for growth and survival. As such, microbes alter their cellular protein levels and secretion patterns in adaptation to a changing environment. This study focuses on Klebsiella pneumoniae, an opportunistic bacterium responsible for nosocomial infections. By using K. pneumoniae, we aim to determine how a nutrient-limited environment (e.g., zinc depletion) modulates the cellular proteome and secretome of the bacterium. By testing virulence in vitro, we provide novel insight into bacterial responses to limited environments in the presence of the host. RESULTS: Analysis of intra- and extracellular changes identified 2380 proteins from the total cellular proteome (cell pellet) and 246 secreted proteins (supernatant). Specifically, HutC, a repressor of the histidine utilization operon, showed significantly increased abundance under zinc-replete conditions, which coincided with an expected reduction in expression of genes within the hut operon from our validating qRT-PCR analysis. Additionally, we characterized a putative cation transport regulator, ChaB that showed significantly higher abundance under zinc-replete vs. -limited conditions, suggesting a role in metal ion homeostasis. Phenotypic analysis of a chaB deletion strain demonstrated a reduction in capsule production, zinc-dependent growth and ion utilization, and reduced virulence when compared to the wild-type strain. CONCLUSIONS: This is first study to comprehensively profile the impact of zinc availability on the proteome and secretome of K. pneumoniae and uncover a novel connection between zinc transport and capsule production in the bacterial system.


Assuntos
Cápsulas Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Proteômica , Transcrição Gênica , Zinco/metabolismo , Animais , Cápsulas Bacterianas/fisiologia , Proteínas de Bactérias/genética , Klebsiella pneumoniae/química , Klebsiella pneumoniae/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Óperon , Proteoma , Virulência/genética , Fatores de Virulência/genética , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA