Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 36(11): 1618-1629, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37897127

RESUMO

Anthropogenic change exposes populations to environments that have been rare or entirely absent from their evolutionary past. Such novel environments are hypothesized to release cryptic genetic variation, a hidden store of variance that can fuel evolution. However, support for this hypothesis is mixed. One possible reason is a lack of clarity in what is meant by 'novel environment', an umbrella term encompassing conditions with potentially contrasting effects on the exposure or concealment of cryptic variation. Here, we use a meta-analysis approach to investigate changes in the total genetic variance of multivariate traits in ancestral versus novel environments. To determine whether the definition of a novel environment could explain the mixed support for a release of cryptic genetic variation, we compared absolute novel environments, those not represented in a population's evolutionary past, to extreme novel environments, those involving frequency or magnitude changes to environments present in a population's ancestry. Despite sufficient statistical power, we detected no broad-scale pattern of increased genetic variance in novel environments, and finding the type of novel environment did not explain any significant variation in effect sizes. When effect sizes were partitioned by experimental design, we found increased genetic variation in studies based on broad-sense measures of variance, and decreased variation in narrow-sense studies, in support of previous research. Therefore, the source of genetic variance, not the definition of a novel environment, was key to understanding environment-dependant genetic variation, highlighting non-additive genetic variance as an important component of cryptic genetic variation and avenue for future research.


Assuntos
Evolução Biológica , Variação Genética , Fenótipo
2.
Evol Lett ; 6(2): 118-135, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386832

RESUMO

It has been hypothesized that the effects of pollutants on phenotypes can be passed to subsequent generations through epigenetic inheritance, affecting populations long after the removal of a pollutant. But there is still little evidence that pollutants can induce persistent epigenetic effects in animals. Here, we show that low doses of commonly used pollutants induce genome-wide differences in cytosine methylation in the freshwater crustacean Daphnia pulex. Uniclonal populations were either continually exposed to pollutants or switched to clean water, and methylation was compared to control populations that did not experience pollutant exposure. Although some direct changes to methylation were only present in the continually exposed populations, others were present in both the continually exposed and switched to clean water treatments, suggesting that these modifications had persisted for 7 months (>15 generations). We also identified modifications that were only present in the populations that had switched to clean water, indicating a long-term legacy of pollutant exposure distinct from the persistent effects. Pollutant-induced differential methylation tended to occur at sites that were highly methylated in controls. Modifications that were observed in both continually and switched treatments were highly methylated in controls and showed reduced methylation in the treatments. On the other hand, modifications found just in the switched treatment tended to have lower levels of methylation in the controls and showed increase methylation in the switched treatment. In a second experiment, we confirmed that sublethal doses of the same pollutants generate effects on life histories for at least three generations following the removal of the pollutant. Our results demonstrate that even low doses of pollutants can induce transgenerational epigenetic effects that are stably transmitted over many generations. Persistent effects are likely to influence phenotypic development, which could contribute to the rapid adaptation, or extinction, of populations confronted by anthropogenic stressors.

3.
Ecol Evol ; 11(23): 16927-16935, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938482

RESUMO

Life-history studies are often conducted in a laboratory environment where it is easy to assay individual animals. However, factors such as temperature, photoperiod, and nutrition vary greatly between laboratory and field environments, making it difficult to compare results. Consequently, there is a need to study individual life histories in the field, but this is currently difficult in systems such as Daphnia where it is not possible to mark and track individual animals. Here, we present a proof of principle study showing that field cages are a reliable method for collecting individual-level life-history data in Daphnia magna. As a first step, we compared the life history of paired animals reared outside and inside cages to test the hypothesis that cages allow free flow of algal food resources. We then used a seminatural mesocosm setting to compare the performance of individual field cages versus glass jars refilled with mesocosm water each day. We found that cages did not inhibit food flow and that differences in life histories between three clones detected in the jar assays were also detectable using the much less labor-intensive field cages. We conclude that field cages are a feasible approach for collecting individual-level life-history data in systems such as Daphnia where individual animals cannot be marked and tracked.

4.
Evol Dev ; 22(5): 345-357, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579775

RESUMO

Understanding how genetic, nongenetic, and environmental cues are integrated during development may be critical in understanding if, and how, organisms will respond to rapid environmental change. Normally, only post-embryonic studies are possible. But in this study, we developed a real-time, high-throughput confocal microscope assay that allowed us to link Daphnia embryogenesis to offspring life history variation at the individual level. Our assay identified eight clear developmental phenotypes linked by seven developmental stages, the duration of which were correlated with the expression of specific offspring life history traits. Daphnia embryogenesis varied not only between clones reared in the same environment, but also within a single clone when mothers were of different ages or reared in different food environments. Our results support the hypothesis that Daphnia embryogenesis is plastic and can be altered by changes in maternal state or maternal environment. As well as furthering our understanding of the mechanisms underpinning parental effects, our assay may also have an industrial application if it can be used as a rapid ecotoxicological prescreen for testing the effect that pollutant doses have on offspring life histories traditionally assayed with a 21-day Daphnia reproduction test.


Assuntos
Adaptação Fisiológica , Variação Biológica Individual , Daphnia/embriologia , Desenvolvimento Embrionário , Características de História de Vida , Herança Materna , Animais , Daphnia/genética , Embrião não Mamífero/embriologia , Ensaios de Triagem em Larga Escala , Microscopia Confocal
5.
Environ Pollut ; 255(Pt 1): 113178, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520904

RESUMO

Microplastic (MP) pollution is potentially a major threat to many aquatic organisms. Yet we currently know very little about the mechanisms responsible for the effects of small MPs on phenotypes, and the extent to which effects of MPs are modified by genetic and environmental factors. Using a multivariate approach, we studied the effects of 500 nm polystyrene microspheres on the life history and immunity of eight clones of the freshwater cladoceran Daphnia magna reared at two temperatures (18 °C/24 °C). MP exposure altered multivariate phenotypes in half of the clones we studied but had no effect on others. In the clones that were affected, individuals exposed to MPs had smaller offspring at both temperatures, and more offspring at high temperature. Differences in response to MP exposure were unrelated to differences in particle uptake, but were instead linked to an upregulation of haemocytes, particularly at high temperature. The clone-specific, context-dependent nature of our results demonstrates the importance of incorporating genetic variation and environmental context into assessments of the impact of plastic particle exposure. Our results identify immunity as an important mechanism underpinning genetically variable responses to MP pollution and may have major implications for predicting consequences of MP pollution.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/genética , Microplásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Água Doce/química , Temperatura Alta , Microplásticos/análise , Poliestirenos/farmacologia , Poluentes Químicos da Água/análise
6.
Am Nat ; 186(3): 376-89, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26655355

RESUMO

Genetic inheritance underpins evolutionary theories of aging, but the role that nongenetic inheritance plays is unclear. Parental age reduces the life span of offspring in a diverse array of taxa but has not been explained from an evolutionary perspective. We quantified the effect that maternal age had on the growth and maturation decisions, life history, rates of senescence, and life span of offspring from three Daphnia pulex clones collected from different populations. We then used those data to test general hypotheses proposed to explain maternal age effects on offspring life span. Three generations of breeding from young or old mothers produced dramatic differences in the life histories of fourth-generation offspring, including significant reductions in life span. The magnitude of the effect differed between clones, which suggests that genetic and nongenetic factors ultimately underpin trait inheritance and shape patterns of aging. Older parents did not transmit a senescent state to their offspring. Instead, offspring from older ancestors had increased early-life reproductive effort, which resulted in an earlier onset of reproductive senescence, and an increased rate of actuarial senescence, which shortened their life span. Our results provide a clear example of the need to consider multiple inheritance mechanisms when studying trait evolution.


Assuntos
Daphnia/crescimento & desenvolvimento , Daphnia/genética , Longevidade , Idade Materna , Envelhecimento/fisiologia , Animais , Evolução Biológica , Feminino , Estágios do Ciclo de Vida , Reprodução/fisiologia
7.
Evolution ; 67(2): 525-38, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23356623

RESUMO

Maturation is a developmental trait that plays a key role in shaping organisms' life-history. However, progress in understanding how maturation phenotypes evolve has been held back by confusion over how best to model maturation decisions and a lack of studies comparing genotypic variation in maturation. Here, we fitted probabilistic maturation reaction norms (PMRNs) to data collected from five clones of Daphnia magna and five of Daphnia pulex collected from within and between different populations. We directly compared the utility of modeling approaches that assume maturation to be a process with an instantaneous rate with those that do not by fitting maturation rate and logistic regression models, and emphasize similarities and differences between them. Our results demonstrate that in Daphnia, PMRNs using a logistic regression approach were simpler to use and provided a better fit to the data. The decision to mature was plastic across a range of growth trajectories and dependent upon both body size and age. However, the age effect was stronger in D. magna than D. pulex and varied considerably between clones. Our results support the idea that maturation thresholds can evolve but also suggest that the notion of a threshold based on a single fixed state is an oversimplification that underestimates the adaptability of these important traits.


Assuntos
Daphnia/genética , Variação Genética , Modelos Estatísticos , Animais , Daphnia/crescimento & desenvolvimento , Genótipo , Modelos Logísticos , População/genética
8.
Am Nat ; 170(4): 520-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17891731

RESUMO

Maternal effects arise when a mother's phenotype or the environment she experiences influences the phenotype of her progeny. Most studies of adaptive maternal effects are a "snapshot" of a mother's lifetime offspring provisioning and do not generally consider the effects of earlier siblings on those produced later. Here we show that in soil mites, offspring provisioning strategies are dynamic, changing from an emphasis on egg number in young females to egg size in older females. This pattern may be adaptive if it increases the survival of younger offspring that must compete with older, larger siblings. The dynamic shift in egg provisioning was greater in high-food environments in which females lived longer, creating increasing asymmetry in offspring competitive abilities. Females reared in isolation and in the presence of a high-density colony had identical provisioning strategies, suggesting that, unlike males in this species, females do not use pheromones to assess colony size. Our findings suggest that the adaptive significance of maternal effects may be misinterpreted when studies consider only a snapshot of a female's offspring provisioning strategy or when components of the offspring provisioning strategy are studied in isolation.


Assuntos
Acaridae/fisiologia , Reprodução/fisiologia , Zigoto/fisiologia , Animais , Tamanho Corporal , Dieta , Feminino , Masculino , Mães , Feromônios/fisiologia , Seleção Genética , Leveduras
9.
Am Nat ; 167(2): 206-15, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16670981

RESUMO

Intergenerational effects arise when parents' actions influence the reproduction and survival of their offspring and possibly later descendants. Models suggest that intergenerational effects have important implications for both population dynamical patterns and the evolution of life-history traits. However, these will depend on the nature and duration of intergenerational effects. Here we show that manipulating parental food environments of soil mites produced intergenerational effects that were still detectable in the life histories of descendents three generations later. Intergenerational effects varied in different environments and from one generation to the next. In low-food environments, variation in egg size altered a trade-off between age and size at maturity and had little effect on the size of eggs produced in subsequent generations. Consequently, intergenerational effects decreased over time. In contrast, in high-food environments, variation in egg size predominantly influenced a trade-off between fecundity and adult survival and generated increasing variation in egg size. As a result, the persistence and significance of intergenerational effects varied between high- and low-food environments. Context-dependent intergenerational effects can therefore have complex but important effects on population dynamics.


Assuntos
Acaridae/fisiologia , Meio Ambiente , Acaridae/anatomia & histologia , Fatores Etários , Animais , Comportamento Alimentar , Feminino , Masculino , Óvulo/citologia , Dinâmica Populacional , Reprodução
10.
Proc Biol Sci ; 273(1591): 1173-81, 2006 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-16720388

RESUMO

Population dynamics result from the interplay of density-independent and density-dependent processes. Understanding this interplay is important, especially for being able to predict near-term population trajectories for management. In recent years, the study of model systems-experimental, observational and theoretical-has shed considerable light on the way that the both density-dependent and -independent aspects of the environment affect population dynamics via impacting on the organism's life history and therefore demography. These model-based approaches suggest that (i) individuals in different states differ in their demographic performance, (ii) these differences generate structure that can fluctuate independently of current total population size and so can influence the dynamics in important ways, (iii) individuals are strongly affected by both current and past environments, even when the past environments may be in previous generations and (iv) dynamics are typically complex and transient due to environmental noise perturbing complex population structures. For understanding population dynamics of any given system, we suggest that 'the devil is in the detail'. Experimental dissection of empirical systems is providing important insights into the details of the drivers of demographic responses and therefore dynamics and should also stimulate theory that incorporates relevant biological mechanism.


Assuntos
Adaptação Fisiológica , Demografia , Ecossistema , Animais , Modelos Biológicos , Fenótipo , Dinâmica Populacional , Fatores de Tempo
11.
Proc Biol Sci ; 271(1542): 919-24, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15255046

RESUMO

In most organisms, transitions between different life-history stages occur later and at smaller sizes as growth conditions deteriorate. Day and Rowe recently proposed that this pattern could be explained by the existence of developmental thresholds (minimum sizes or levels of condition below which transitions are unable to proceed). The developmental-threshold model predicts that the reaction norm of age and size at maturity will rotate in an anticlockwise manner from positive to a shallow negative slope if: (i) initial body size or condition is reduced; and/or (ii) some individuals encounter poor growth conditions at increasingly early developmental stages. We tested these predictions by rearing replicated populations of soil mites Sancassania berlesei (Michael) under different growth conditions. High-food environments produced a vertical relationship between age and size at maturity. The slope became increasingly shallow as food was reduced. By contrast, high food in the maternal environment reduced the slope of the reaction norm of age and size at maturity, whereas low food increased it. Overall, the reaction norm of age and size at maturity in S. berlesei was significantly nonlinear and differed for males and females. We describe how growth conditions, mother's environment and sex determine age and size at maturity in S. berlesei.


Assuntos
Acaridae/crescimento & desenvolvimento , Constituição Corporal/fisiologia , Meio Ambiente , Modelos Biológicos , Maturidade Sexual/fisiologia , Acaridae/fisiologia , Fatores Etários , Animais , Feminino , Masculino , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA