Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 213: 76-82, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35469771

RESUMO

N,N-dimethylaniline and 1,2,5-trithiepane, present in the salivary glands of Podisus nigrispinus Dallas (Heteroptera: Pentatomidae), are toxic compounds which kill prey. The insecticidal activity and midgut cytotoxicity in Spodoptera frugiperda (J. E. Smith (Lepidoptera: Noctuidae) caterpillars fed on a diet with lethal concentrations of N,N-dimethylaniline and 1,2,5-trithiepane were evaluated. Midgut cell damage was evaluated with both light and transmission electron microscopy. The LC50 and LC90 of N,N-dimethylaniline were 0.611 and 0.818 µg L-1, respectively, and for 1,2,5-trithiepane they were 0.671 and 0.885 µg L-1, respectively. Vacuolization in the digestive and goblet cells occurred after 1 h of exposure in the midgut of the insects treated with either N,N-dimethylaniline and 1,2,5-trithiepane. Changes caused by N,N-dimethylaniline and 1,2,5-trithiepane in the midgut of S. frugiperda caterpillars may affect digestion and nutrient absorption with negative impacts on the insect's development and survival. The non-proteinaceous N,N-dimethylaniline and 1,2,5-trithiepane compounds have insecticidal effects, confirming the potential use on S. frugiperda caterpillars through oral administration.


Assuntos
Heterópteros , Inseticidas , Animais , Sistema Digestório , Inseticidas/toxicidade , Comportamento Predatório , Spodoptera
2.
Naturwissenschaften ; 109(2): 17, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138481

RESUMO

Climate change mediated by anthropogenic activity induces significant alterations on pest abundance and behavior and a potential increase in the use of agrochemicals for crop protection. Pesticides have been a tool in the control of pests, diseases, and weeds of agricultural systems. However, little attention has been given to their toxic effects on beneficial insect communities that contribute to the maintenance and sustainability of agroecosystems. In addition to pesticide-induced direct mortality, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. This review describes the sublethal effects of pesticides on agriculturally beneficial insects and provides new information about the impacts on the behavior and physiology of these insects. The different types of sublethal effects of pesticides used in agriculture on pollinators, predators, parasitoids, and coprophagous insects were detailed.


Assuntos
Artrópodes , Praguicidas , Agricultura , Animais , Insetos , Praguicidas/toxicidade
3.
Environ Sci Pollut Res Int ; 29(20): 29967-29975, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997483

RESUMO

Forestry pest management includes biological and chemical methods of pest control. Using insecticides and natural enemies can be compatible in forest pest management programs. The compatibility of the predatory stink bug Podisus distinctus with the insecticide indoxacarb, used in forestry, needs to be evaluated in Brazil. This study investigated the mortality, survival, respiration, preference, prey consumption, and locomotor activity of P. distinctus adults exposed to indoxacarb. In concentration-mortality bioassays, the lethality of indoxacarb (LC50 = 2.62 g L-1 and LC90 = 6.11 g L-1) was confirmed in P. distinctus adults. The survival rate was 100% in predator insects not exposed to indoxacarb, declining to 40.7% in predator insects exposed to 2.62 g L-1 and 0.1% in predators treated with 6.11 g L-1. Indoxacarb reduced the respiration of P. distinctus from 18.45 to 14.41 µL CO2 h-1 at 2.62 g L-1 for up to 3 h after insecticide exposure, inhibiting food consumption and displaying hyperexcitation. The harmful effects of indoxacarb to the natural enemy suggest that it should be better assessed for use with P. distinctus for pest management in forestry.


Assuntos
Hemípteros , Heterópteros , Inseticidas , Animais , Inseticidas/farmacologia , Oxazinas/farmacologia , Comportamento Predatório
4.
Pest Manag Sci ; 78(1): 126-133, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34453875

RESUMO

BACKGROUND: The potential of Beauveria bassiana and Metarhizium anisopliae isolates obtained from naturally infected oil palm pests was evaluated to control Demotispa neivai as an alternative for organophosphate insecticide use in oil palm crops in Latin America. Two B. bassiana (Bb-0018 and Bb-0025) and two M. anisopliae (Ma-0002 and Ma-0003) isolates were tested against D. neivai adults for hydrophobicity, virulence, survival, adhesion to host cuticle, and mortality in semi-field conditions. RESULTS: Concentration-mortality bioassays demonstrate that isolates had lethal effect on D. neivai adults with Bb-0025 [median lethal concentration (LC50 ) = 3.45 × 107 conidia mL-1 ] and Bb-0018 (LC50  = 3.75 × 107 conidia mL-1 ) being the most effective followed by Ma-0003 (LC50  = 3.38 × 108 conidia mL-1 ) and Ma-0002 (5.33 × 108 conidia mL-1 ). Adult survival was 99% without exposure to fungal isolates, decreasing to 21.65% in insects exposed to Ma-0002, 19.41% with Ma-0003, 20.13% with Bb-0018, and 0.17% with Bb-0025. Mortality of D. neivai adults caused by the entomopathogenic fungal isolates was similar in both laboratory and semi-field conditions. Also, vegetative growth of the entomopathogenic fungal isolates was found in infected D. neivai adults in the field. CONCLUSION: Our data suggest that the tested entomopathogenic fungal isolates are effective against D. neivai with potential to be used as biological control agents contributing to the decrease of the use of chemical insecticides to control this oil palm pest. © 2021 Society of Chemical Industry.


Assuntos
Beauveria , Besouros , Metarhizium , Animais , Controle Biológico de Vetores , Esporos Fúngicos
5.
Plants (Basel) ; 10(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834876

RESUMO

Tenebrio molitor is one of the main stored product pests. This study characterized oregano essential oil (OEO) by gas chromatography (GC/FID and GC/MS) and assessed its insecticidal properties against T. molitor. Mortality, survival, respiration, and behavioral response in larva, pupa, and adult of this insect were determined. The major components of OEO were carvacrol (25.6%), p-cymene (12.3%), linalool (8.71%), thymol (7.22%), γ-terpinene (7.21%), caryophyllene oxide (4.67%), α-pinene (2.71%), and eucalyptol (2.69%). OEO caused high contact toxicity in larvae (LD50 = 3.03 µg insect-1), pupae (LD50 = 5.01 µg insect-1), and adults (LD50 = 5.12 µg insect-1) of T. molitor. Survival rates were 100% in larvae, pupae, and adults of T. molitor not treated with OEO, declining to 65-54%, 38-44%, 30-23%, and 6-2% in insects treated with LD25, LD50, LD75, and LD90, respectively. Low respiration rates of T. molitor at different developmental stages was observed after OEO exposure. Additionally, OEO exposure affects behavioral avoidance response and causes repellency in larvae and adults. These findings show that OEO exerts insecticidal and repellent effects against T. molitor, suggesting a potent alternative to synthetic insecticides for controlling the beetle.

6.
Insects ; 12(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067273

RESUMO

Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is the main pest of maize crops, and effective methods for pest management are needed. The insecticidal efficacy of deltamethrin was evaluated against S. frugiperda for toxicity, survival, locomotion, anti-feeding, and histological changes in the midgut. Concentration-mortality bioassays confirmed that deltamethrin (LC50 = 3.58 mg mL-1) is toxic to S. frugiperda caterpillars. The survival rate was 99.7% in caterpillars not exposed to deltamethrin, decreasing to 50.3% in caterpillars exposed to LC50, and 0.1% in caterpillars treated with LC90. Spodoptera frugiperda demonstrated reduced mobility on deltamethrin-treated surfaces. Deltamethrin promoted a low respiration rate of S. frugiperda for up to 3 h after insecticide exposure, displaying immobilization and inhibiting food consumption. Deltamethrin induces histological alterations (e.g., disorganization of the striated border, cytoplasm vacuolization, and cell fragmentation) in the midgut, damaging the digestive cells and peritrophic matrix, affecting digestion and nutrient absorption.

7.
Infect Genet Evol ; 93: 104974, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34166815

RESUMO

Chitin synthesis inhibitors (CSI) are supposed to inhibit formation of chitin microfibrils in newly synthesized cuticle during molting process. Conversely, there has been comparatively few data on morphological effects of CSI on non-target insect organs. In this work, the effects of the CSI novaluron on behavior and midgut of A. aegypti were evaluated. Toxicity bioassays revealed that novaluron is toxic to A. aegypti larva with LC50 = 18.57 mg L-1 when exposed in aqueous solution for 24 h. Novaluron treated larvae were less active and spent more time resting compared to the control group. Histopathology showed that midguts of novaluron-treated larvae had cytoplasm vacuolization and damaged brush border. Cytotoxic effects in midguts of treated larvae induced necrosis, autophagy and damage to mitochondria. Despite being chitin synthesis inhibitor, novaluron did not induce alterations in the integument of A. aegypti larvae. Fluorescence microscopy revealed that the number of digestive cells were higher in novaluron-treated larvae than in control, in response to digestive cell apoptosis. The present study highlights the importance of novaluron against A. aegypti larvae by causing injuries to non-target organs, altering behaviors, inducing cell death and inhibiting cell proliferation.


Assuntos
Aedes , Inseticidas , Controle de Mosquitos , Compostos de Fenilureia , Aedes/crescimento & desenvolvimento , Animais , Quitina/metabolismo , Sistema Digestório/efeitos dos fármacos , Larva/crescimento & desenvolvimento
8.
Environ Sci Pollut Res Int ; 28(41): 57449-57458, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34091850

RESUMO

The control of defoliating caterpillars in forestry includes the use of insecticides and releases of the predatory bug Podisus nigrispinus, but some compounds may affect non-target natural enemies, which need evaluation of risk assessment. This research investigates the survival, preference, and prey consumption of P. nigrispinus adults fed with prey treated with the lethal concentration (LC50) of Bacillus thuringiensis (Bt), permethrin, tebufenozide, and thiamethoxam. Moreover, midgut histopathology of P. nigrispinus fed with preys treated with LC50 of each insecticide was investigated. The insecticides Bt, permethrin, and thiamethoxam reduce the survival and the prey consumption in P. nigrispinus fed with preys contaminate with these chemicals. However, the four tested insecticides, including tebufenozide, cause histological changes such as irregular epithelial architecture, cytoplasm vacuolization, and release of cell fragments in the midgut lumen of P. nigrispinus. The sublethal effects of Bt, permethrin, tebufenozide, and thiamethoxam to the natural enemy suggest that they should be better evaluated to be used together with P. nigrispinus for integrated pest management in forestry.


Assuntos
Heterópteros , Inseticidas , Animais , Sistema Digestório , Inseticidas/toxicidade , Permetrina , Comportamento Predatório
9.
Tissue Cell ; 70: 101498, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33545532

RESUMO

Brontocoris tabidus (Signoret) (Heteroptera: Pentatomidae) is a zoophytophagous insect used for biological control in agriculture and forest systems because its nymphs and adults feed on insects and plants. The predatory Pentatomidae insert the mouthparts into the prey, releasing saliva to paralysis and kills the insect, as well as digest body parts to be sucked in a preliminary extra-oral digestion. In a short period of time, this insect shows the ability to feed again, suggesting the existence of a constant and abundant secretory cycle in the salivary glands. This study evaluated the morphological, histochemical and ultrastructural changes of the salivary glands of B. tabidus in fed and starved insects. The salivary complex of this predatory bug has a pair of bilobed salivary glands and a pair of tubular accessory salivary glands. The accessory glands have the lumen lined by a thick non-cuticular layer rich in glycoproteins. The secretory cells of the B. tabidus principal salivary glands have constant secretory activity, with each lobe producing different substances. The physiological processes that occur in the salivary gland of B. tabidus indicate that the insect needs to feed constantly, corroborating the potential of this insect to be used in biological control programs.


Assuntos
Heterópteros , Glândulas Salivares , Animais , Secreções Corporais , Heterópteros/citologia , Heterópteros/fisiologia , Heterópteros/ultraestrutura , Comportamento Predatório , Saliva , Glândulas Salivares/citologia , Glândulas Salivares/fisiologia , Glândulas Salivares/ultraestrutura
10.
Insects ; 12(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418851

RESUMO

The lace bug, Leptopharsa gibbicarina is a vector of Pestalotiopsis fungal complex in oil palm crops in the Americas. The effects of four benzoylphenyl ureas (BPUs) (lufenuron, novaluron, teflubenzuron, and triflumuron) were evaluated against L. gibbicarina for toxicity, survival, reproduction, and mortality in semi-field conditions. Concentration-mortality bioassays demonstrated that novaluron (LC50 = 0.33 ppm), teflubenzuron (LC50 = 0.24 ppm), lufenuron (LC50 = 0.17 ppm), and triflumuron (LC50 = 0.42 ppm) are toxic to L. gibbicarina nymphs. The survival rate was 99% in control nymphs, decreasing to 50% in nymphs exposed to LC50 of triflumuron, 47% in nymphs treated with lufenuron, 43% in nymphs treated with teflubenzuron, and 43% in those treated with novaluron. Sublethal concentrations of BPUs showed detrimental effects on the adult emergence, longevity, fecundity, and fertility of this insect. The mortality of nymphs caused by these insecticides was similar in both laboratory and semi-field conditions. Our results suggest that novaluron, teflubenzuron, and triflumuron are highly effective against L. gibbicarina, and therefore, have potential applications for this oil palm pest.

11.
Chemosphere ; 263: 128008, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32841879

RESUMO

The anthranilic diamide, chlorantraniliprole is a systemic insecticide affecting ryanodine receptors. This insecticide is used to control caterpillars in soybean crops because it has low toxicity to non-target organisms. The objective was to identify side-effects of chlorantraniliprole on midgut histopathology, respiration and behavior of the velvetbean caterpillar Anticarsia gemmatalis in laboratoty. Chlorantraniliprole has LC50 = 0.61 (0.58-0.64) mg mL-1 for A. gemmatalis fourth instar caterpillars after 96 h. The insecticide causes severe histopathological effects in the midgut with epithelial disorganization, microvilli degeneration, cytoplasm vacuolization, cell fragmentation, and peritrophic matrix disorganization. The respiratory rate and the walking speed decrease, whereas the resting period increase for caterpillars exposed to this insecticide. Chlorantraniliprole is toxic to A. gemmatalis at median lethal concentrations causing severe histological and ultrastructural changes with degeneration of the midgut epithelium, reduction of respiratory rates and inducing an arresting behavioral response of this insect.


Assuntos
Inseticidas/toxicidade , Lepidópteros/fisiologia , ortoaminobenzoatos/toxicidade , Animais , Sistema Digestório , Larva , Locomoção/efeitos dos fármacos , Microvilosidades , Mariposas , Respiração/efeitos dos fármacos , Glycine max
12.
Chemosphere ; 261: 127720, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32721693

RESUMO

Podisus nigrispinus Dallas (Heteroptera: Pentatomidae) preys on insect pests in eucalyptus plantations where it can be exposed to insecticides used in pest control. The effect of insecticides on non-target natural enemies requires further study. The objective of the present study was to evaluate the side-effects of Bacillus thuringiensis (Bt), permethrin, tebufenozide and thiamethoxam on third instar nymphs of the predator P. nigrispinus in the laboratory. The toxicity of insecticides for this insect was determined by estimating their lethal concentrations. Podisus nigrispinus behavior after exposure to insecticides was analyzed using a video tracking system and the respiratory rate with a respirometer. Prey/nymph consumption was assessed after 24 h of starvation. The preference of P. nigrispinus nymphs, for prey treated or not with the insecticides, was evaluated in free choice tests. The insecticides Bt [LC50 = 1.10(0.83-1.46) mg mL-1], permethrin [LC50 = 0.25(0.17-0.34) mg mL-1], tebufenozide [LC50 = 5.71(4.17-7.57) mg mL-1] and thiamethoxam [LC50 = 0.04(0.02-0.06) mg mL-1] are toxic to P. nigrispinus nymphs. Bt and the insecticides tebufenozide, permethrin and thiamethoxam reduced the respiratory rate of P. nigrispinus. The insecticides permethrin, tebufenozide and thiamethoxam affect the locomotion of this insect's nymphs. Prey treated with Bt, permethrin and thiamethoxam are less preferred by P. nigrispinus. The survival of the nymphs of this predator was 93.3%, 66.7%, 56.6%, 0% and 0% in the control, tebufenozide, Bt, permethrin and thiamethoxam treatments, respectively. In addition, the reduction of prey consumption, treated with neurotoxic insecticides, reduces the predatory potential of this natural enemy. Bt and tefubenozide present low toxicity for P. nigrispinus, but the neurotoxic products have low compatibility with this natural enemy and, therefore, are not recommended, with this predator in the management of forest insect pests.


Assuntos
Comportamento Alimentar/efeitos dos fármacos , Heterópteros/efeitos dos fármacos , Inseticidas/toxicidade , Ninfa/efeitos dos fármacos , Comportamento Predatório/efeitos dos fármacos , Animais , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/crescimento & desenvolvimento , Brasil , Eucalyptus/crescimento & desenvolvimento , Controle de Pragas , Controle Biológico de Vetores
13.
Insects ; 11(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570794

RESUMO

In the present work, we evaluate the toxic and repellent properties of lemongrass (Cymbopogon citratus (DC. ex Nees) Stapf.) essential oil and its components against Sitophilus granarius Linnaeus as an alternative to insecticide use. The lethal dose (LD50 and LD90), survivorship, respiration rate, and repellency on adults of S. granarius exposed to different doses of lemongrass oil and some of its components were evaluated. The chemical composition of the essential oil was found to have the major components of neral (24.6%), citral (18.7%), geranyl acetate (12.4%), geranial (12.3%), and limonene (7.55%). Lemongrass essential oil (LD50 = 4.03 µg·insect-1), citral (LD50 = 6.92 µg·insect-1), and geranyl acetate (LD50 = 3.93 µg·insect-1) were toxic to S. granarius adults. Survivorship was 99.9% in insects not exposed to lemongrass essential oil, decreasing to 57.6%, 43.1%, and 25.9% in insects exposed to LD50 of essential oil, citral, and geranyl acetate, respectively. The insects had low respiratory rates and locomotion after exposure to the essential oil, geranyl acetate, and citral. Our data show that lemongrass essential oils and their components have insecticidal and repellent activity against S. granarius and, therefore, have the potential for application in stored grain pest management schemes.

14.
Insects ; 11(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429031

RESUMO

In the present work, we evaluated the insecticidal activity of Bacillus thuringiensis (Bt) strains on Euprosterna elaeasa as an alternative for the organophosphate insecticide use in oil palm plantations in the Americas. The toxic effects of four Bt-strains (HD-1 var. kurstaki, SA-12 var. kurstaki, ABTS-1857 var. aizawai, and GC-91 var. aizawai) were evaluated against E. elaeasa caterpillars for toxicity, survival, anti-feeding, and mortality in field-controlled conditions. The Bt-strains, ABTS-1857 var. aizawai (LC50 = 0.84 mg mL-1), GC-91 var. aizawai (LC50 = 1.13 mg mL-1), and HD-1 var. kurstaki (LC50 = 1.25 mg mL-1), were the most toxic to E. elaeasa. The caterpillar survival was 99% without exposure to Bt-strains, and decreased to 52-23% in insects treated with the LC50 and 10-1% in insects exposed to LC90 after 48 h. Furthermore, Bt-strains decreased significantly the consumption of oil palm leaves of E. elaeasa 3 h after exposure. Mortality of E. elaeasa caterpillars caused by Bt-strains had similar lethal effects in the laboratory and in field conditions. Our data suggest that Bt-strains have insecticidal activity against E. elaeasa and, therefore, have potential applications in oil palm pest management schemes.

15.
Chemosphere ; 238: 124585, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31437628

RESUMO

Broad-spectrum insecticides used in pest control are a risk for non-target insects. Their compatibility to the insecticide spinosad, used in agriculture and forestry as a biological control tool, needs to be evaluated. Podisus nigrispinus Dallas (Heteroptera: Pentatomidae) is a predatory bug used in the pest management of agricultural and forest systems where spinosad is also frequently applied. The aim of this study was to evaluate the toxicity, histopathology and cytotoxicity in midgut cells of P. nigrispinus exposed to spinosad. The toxicity test was performed to determine the lethal concentrations of spinosad after exposure by ingestion. The histopathology and cytotoxicity caused by spinosad were analyzed in the three midgut regions (anterior, middle and posterior) of P. nigrispinus during different exposure periods. Spinosad, at low concentrations, was toxic to P. nigrispinus [LC50 = 3.15 (3.02-3.26) µg.L-1]. Cell degeneration features such as cytoplasm vacuolization, chromatin condensation and release of cell fragments to the midgut lumen were observed in this organ. Cell death via apoptosis was found in the three midgut regions of this predator after exposure to the insecticide. Spinosad is toxic to P. nigrispinus, and causes histological and cytological damage followed by cell death in the midgut, suggesting a dangerous effect on a beneficial non-target insect.


Assuntos
Sistema Digestório/efeitos dos fármacos , Heterópteros/efeitos dos fármacos , Inseticidas/toxicidade , Macrolídeos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Combinação de Medicamentos
16.
Ecotoxicol Environ Saf ; 189: 109978, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761554

RESUMO

The endoparasitoid wasp Palmistichus elaeisis Delvare & LaSalle (Hymenoptera: Eulophidae) is used to control defoliating lepidopteran pests. Chemical insecticides are not compatible with natural enemies, but bioinsecticides, such as Bacillus thuringiensis Berliner (Bt), have great potential for use in integrated pest management. However, interactions between Bt and P. elaeisis still need to be investigated. This study aimed to evaluate the effects of Bt on parental and first-generation P. elaeisis parasitizing Bt-susceptible and -resistant Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). An additional aim was to determine the toxicity of Bt to susceptible third-instar S. frugiperda larvae. Larvae were exposed to lethal concentrations (LC50 and LC90) of Bt and then allowed to be parasitized by P. elaeisis. Parasitoid longevity, immature production, reproductive performance, and behavioral responses were evaluated. Bt repelled P. elaeisis and reduced immature production. Parental and first filial generation parasitoids of both sexes emerged from Bt-treated larvae showed lower survivorship than controls. Parasitoids had poorer reproductive performance in Bt-susceptible and -resistant pupae than in untreated pupae. Palmistichus elaeisis emerged from Bt-susceptible and -resistant S. frugiperda showed altered host-searching behavior and reproductive parameters, which indicates low compatibility between the bioinsecticide agent and the parasitoid wasp.


Assuntos
Bacillus thuringiensis/fisiologia , Himenópteros/fisiologia , Inseticidas/efeitos adversos , Controle Biológico de Vetores/métodos , Animais , Feminino , Inseticidas/farmacologia , Larva/fisiologia , Longevidade/efeitos dos fármacos , Masculino , Pupa/microbiologia , Pupa/parasitologia , Reprodução/efeitos dos fármacos , Spodoptera/microbiologia , Spodoptera/parasitologia
17.
PeerJ ; 7: e7489, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534837

RESUMO

Juvenile hormone analogs (JHA) are known to interfere with growth and biosynthesis of insects with potential for insecticide action. However, there has been comparatively few data on morphological effects of JHA on insect organs. To determine pyriproxyfen effects on Aedes aegypti larvae, we conducted toxicity, behavioral bioassays and assessed ultrastructural effects of pyriproxyfen on midgut cells. A. aegypti larvae were exposed in aqueous solution of pyriproxyfen LC50 concentrations and evaluated for 24 h. This study fulfilled the toxic prevalence of pyriproxyfen to A. aegypti larvae (LC50 = 8.2 mg L-1). Behavioral observations confirmed that pyriproxyfen treatment significantly changes swimming behavior of larvae, limiting its displacement and speed. The pyriproxyfen causes remarkable histopathological and cytotoxic alterations in the midgut of larvae. Histopathological study reveals presence of cytoplasmic vacuolization and damage to brush border of the digestive cells. The main salient lesions of cytotoxic effects are occurrence of cell debris released into the midgut lumen, cytoplasm rich in lipid droplets, autophagosomes, disorganized microvilli and deformed mitochondria. Data suggest that pyriproxyfen can be used to help to control and eradicate this insect vector.

18.
Sci Rep ; 9(1): 8358, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175321

RESUMO

Podisus nigrispinus Dallas (Heteroptera: Pentatomidae), released in biological control programs, is a predator of Lepidopteran and Coleopteran species. Lemongrass essential oil and its constituents can be toxic to this natural enemy. The major constituents of lemongrass essential oil are neral (31.5%), citral (26.1%), and geranyl acetate (2.27%). Six concentrations of lemongrass essential oil and of its citral and geranyl acetate constituents were applied to the thorax of P. nigrispinus nymphs and adults. The walking and respiratory behavior of the P. nigrispinus third-instar nymphs, treated with citral and geranyl acetate at the LD50 and LD90 doses, were analyzed with video and respirometer. The lemongrass essential oil toxicity increased from first- to fifth-instar P. nigrispinus nymphs. The P. nigrispinus respiration rates (µL de CO2 h-1/insect) with citral and geranyl acetate in the LD50 and LD90 differed. Nymphs exposed to the lemongrass essential oil and its constituents on treated surfaces presented irritability or were repelled. Podisus nigrispinus adults were tolerant to the lemongrass essential oil and its constituents, geranyl acetate and citral. The altered respiratory activity with geranyl acetate and the fact that they were irritated and repelled by citral suggest caution with regard to the use of the lemongrass essential oil and its constituents in integrated pest management incorporating this predator, in order to avoid diminishing its efficiency against the pests.


Assuntos
Cymbopogon/química , Heterópteros/efeitos dos fármacos , Óleos Voláteis/farmacologia , Terpenos/farmacologia , Animais , Heterópteros/patogenicidade , Inseticidas/química , Inseticidas/farmacologia , Ninfa/efeitos dos fármacos , Óleos Voláteis/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Comportamento Predatório/efeitos dos fármacos , Terpenos/química
19.
Chemosphere ; 229: 525-528, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31100623

RESUMO

Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) is mainly controlled with synthetic insecticides such as chlorantraniliprole. However, these compounds may affect non-target organs of insect metabolism. The objective of this study was to evaluate the toxic effect in the midgut goblet cells of A. gemmatalis caterpillars exposed to chlorantraniliprole. The midgut of these caterpillars, which ingested the insecticide in medium-lethal dose (LD50), was dissected and evaluated by transmission electron microscopy. The goblet cells microvilli, after exposure to the insecticide, were disorganized and degenerated. This can compromise ionic homeostasis and nutrient absorption, impair physiological mechanisms of detoxification, and reduce the movement of food boluses throughout the insect midgut.


Assuntos
Sistema Digestório/citologia , Células Caliciformes/efeitos dos fármacos , Inseticidas/toxicidade , Mariposas/efeitos dos fármacos , ortoaminobenzoatos/toxicidade , Animais , Sistema Digestório/efeitos dos fármacos , Células Caliciformes/patologia , Células Caliciformes/ultraestrutura , Inativação Metabólica/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Microvilosidades/efeitos dos fármacos , Microvilosidades/patologia , Mariposas/metabolismo
20.
Insects ; 10(4)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010115

RESUMO

The South American palm weevil (SAPW), Rhynchophorus palmarum Linnaeus (Coleoptera: Curculionidae) is the main pest of Elaeis guineensis and damages palm trees with bud rot disease in the Americas. The effects of six neurotoxic insecticides (abamectin, carbaryl, deltamethrin, fipronil, imidacloprid and spinosad) were evaluated against SAPW for toxicity, survival, reproduction, and mortality. Abamectin (LC50 = 0.33 mg mL-1), Carbaryl (LC50 = 0.24 mg mL-1), deltamethrin (LC50 = 0.17 mg mL-1), and fipronil (LC50 = 0.42 mg mL-1) were the most toxic to SAPW. Adult survival was 95% without exposure to insecticides, decreasing to 78-65% in insects treated with the LC25 and 49-35% in insects exposed to LC50. Sublethal doses of carbaryl, fipronil and imidacloprid showed significant effect on the reproduction of this insect. Mortality of SAPW populations caused by insecticides had similar effects in the laboratory and field conditions. The results suggest that carbaryl, deltamethrin, fipronil, and imidacloprid caused significantly higher mortality as compared to the control in SAPW and may be used to control its populations in oil palm trees where bud rot appears as the key disease for SAPW attraction and infestation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA