Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Hum Genet ; 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39465390

RESUMO

PURPOSE: With exome sequencing now standard, diagnostic labs are in need of a, in principle, to-the-day-accurate list of genes associated with rare diseases. Manual curation efforts are slow and often disease specific, while efforts relying on single sources are too inaccurate and may result in false-positive or false-negative genes. METHODS: We established the MorbidGenes panel based on a list of publicly available databases: OMIM, PanelApp, SysNDD, ClinVar, HGMD and GenCC. A simple logic allows inclusion of genes that are supported by at least one of these sources, providing a list of all genes with diagnostic relevance. RESULTS: The panel is freely available at https://morbidgenes.uni-leipzig.de and currently includes 5037 genes (as of October 2024) with minimally sufficient evidence on disease causality to classify them as diagnostically relevant. CONCLUSION: The MorbidGenes panel is an open and comprehensive overview of diagnostically relevant rare disease genes based on a diverse set of resources. The panel is updated monthly to keep up with the ever increasing number of rare disease genes.

2.
Nat Commun ; 15(1): 7909, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256359

RESUMO

Members of the leucine rich repeat (LRR) and PDZ domain (LAP) protein family are essential for animal development and histogenesis. Densin-180, encoded by LRRC7, is the only LAP protein selectively expressed in neurons. Densin-180 is a postsynaptic scaffold at glutamatergic synapses, linking cytoskeletal elements with signalling proteins such as the α-subunit of Ca2+/calmodulin-dependent protein kinase II. We have previously observed an association between high impact variants in LRRC7 and Intellectual Disability; also three individual cases with variants in LRRC7 had been described. We identify here 33 individuals (one of them previously described) with a dominant neurodevelopmental disorder due to heterozygous missense or loss-of-function variants in LRRC7. The clinical spectrum involves intellectual disability, autism, ADHD, aggression and, in several cases, hyperphagia-associated obesity. A PDZ domain variant interferes with synaptic targeting of Densin-180 in primary cultured neurons. Using in vitro systems (two hybrid, BioID, coimmunoprecipitation of tagged proteins from 293T cells) we identified new candidate interaction partners for the LRR domain, including protein phosphatase 1 (PP1), and observed that variants in the LRR reduced binding to these proteins. We conclude that LRRC7 encodes a major determinant of intellectual development and behaviour.


Assuntos
Agressão , Transtorno Autístico , Deficiência Intelectual , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Adulto Jovem , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Células HEK293 , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Domínios PDZ/genética , Sinapses/metabolismo
3.
Epilepsia ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348199

RESUMO

OBJECTIVE: POLR3B encodes the second largest subunit of RNA polymerase III, which is essential for transcription of small non-coding RNAs. Biallelic pathogenic variants in POLR3B are associated with an inherited hypomyelinating leukodystrophy. Recently, de novo heterozygous variants in POLR3B were reported in six individuals with ataxia, spasticity, and demyelinating peripheral neuropathy. Three of these individuals had epileptic seizures. The aim of this article is to precisely define the epilepsy phenotype associated with de novo heterozygous POLR3B variants. METHODS: We used online gene-matching tools to identify 13 patients with de novo POLR3B variants. We systematically collected genotype and phenotype data from clinicians using two standardized proformas. RESULTS: All 13 patients had novel POLR3B variants. Twelve of 13 variants were classified as pathogenic or likely pathogenic as per American College of Medical Genetics (ACMG) criteria. Patients presented with generalized myoclonic, myoclonic-atonic, atypical absence, or tonic-clonic seizures between the ages of six months and 4 years. Epilepsy was classified as epilepsy with myoclonic-atonic seizures (EMAtS) in seven patients and "probable EMAtS" in two more. Seizures were treatment resistant in all cases. Three patients became seizure-free. All patients had some degree of developmental delay or intellectual disability. In most cases developmental delay was apparent before the onset of seizures. Three of 13 cases were reported to have developmental stagnation or regression in association with seizure onset. Treatments for epilepsy that were reported by clinicians to be effective were: sodium valproate, which was effective in five of nine patients (5/9) who tried it; rufinamide (2/3); and ketogenic diet (2/3). Additional features were ataxia/incoordination (8/13); microcephaly (7/13); peripheral neuropathy (4/13), and spasticity/hypertonia (6/13). SIGNIFICANCE: POLR3B is a novel genetic developmental and epileptic encephalopathy (DEE) in which EMAtS is the predominant epilepsy phenotype. Ataxia, neuropathy, and hypertonia may be variously observed in these patients.

4.
Mol Cell Biol ; 44(11): 473-488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39219493

RESUMO

P4-ATPases comprise a family of lipid flippases that translocate lipids from the exoplasmic (or luminal) to the cytoplasmic leaflet of biological membranes. Of the 14 known human P4-ATPases, ATP8B2 is a phosphatidylcholine flippase at the plasma membrane, but its physiological function is not well understood. Although ATP8B2 could interact with both CDC50A and CDC50B, it required only the CDC50A interaction for its exit from the endoplasmic reticulum and subsequent transport to the plasma membrane. Three de novo monoallelic missense variations of ATP8B2 were found in patients with intellectual disability. None of these variations affected the interaction of ATP8B2 with CDC50A or its localization to the plasma membrane. However, variations of either of two amino acid residues, which are conserved in all P4-ATPases, significantly reduced the phosphatidylcholine flippase activity of ATP8B2. Furthermore, mutations in the corresponding residues of ATP8B1 and ATP11C were found to decrease their flippase activities toward phosphatidylcholine and phosphatidylserine, respectively. These results indicate that the conserved amino acid residues are crucial for the enzymatic activities of the P4-ATPases.


Assuntos
Adenosina Trifosfatases , Mutação de Sentido Incorreto , Fosfatidilcolinas , Humanos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Fosfatidilcolinas/metabolismo , Membrana Celular/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Células HEK293 , Retículo Endoplasmático/metabolismo , Sequência de Aminoácidos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fosfatidilserinas/metabolismo , Proteínas de Membrana Transportadoras
5.
Kidney Int Rep ; 9(8): 2484-2497, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39156152

RESUMO

Introduction: Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney disease in children. Although only 20% of cases can be genetically explained, the majority remain without an identified underlying etiology. The neurodevelopmental disorder Chung-Jansen syndrome (CHUJANS) is caused by haploinsufficiency of Pleckstrin homology domain-interacting protein (PHIP) and was previously associated with genital malformations. Anecdotal coincidence of CHUJANS and CAKUT prompted us to investigate whether urorenal malformations are part of the phenotypic spectrum of CHUJANS. Methods: Analysis of existing CHUJANS and CAKUT cohorts, consulting matchmaking platforms, and systematic literature review to look for additional patients with both CHUJANS and CAKUT. Prenatal expression studies in murine and human renal tissues to investigate the role for PHIP in kidney development. Results: We identified 4 novel and 8 published cases, indicating variable expressivity with a urorenogenital trait frequency of 5% to 35%. The prenatal expression studies supported a role for PHIP in normal kidney and urinary tract development. Conclusion: Pathogenic PHIP gene variants should be considered as causative in patients with syndromal CAKUT. Conversely, patients with CHUJANS should be clinically evaluated for urorenogenital manifestations. Because neurodevelopmental disorders are often associated with kidney phenotypes, an interdisciplinary re-evaluation offers promise in identifying incompletely penetrant kidney associations and uncovering novel molecular mechanisms of disturbed nephrogenesis.

6.
Ann Neurol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177219

RESUMO

OBJECTIVE: There is currently scarce data on the electroclinical characteristics of epilepsy associated with synapsin 1 (SYN1) pathogenic variations. We examined clinical and electro-encephalographic (EEG) features in patients with epilepsy and SYN1 variants, with the aim of identifying a distinctive electroclinical pattern. METHODS: In this retrospective multicenter study, we collected and reviewed demographic, genetic, and epilepsy data of 19 male patients with SYN1 variants. Specifically, we analyzed interictal EEG data for all patients, and electro-clinical data from 10 epileptic seizures in 5 patients, using prolonged video-EEG monitoring recordings. Inter-ictal EEG functional connectivity parameters and frequency spectrum of the 10 patients over 12 years of age, were computed and compared with those of 56 age- and sex-matched controls. RESULTS: The main electroclinical features of epilepsy in patients with SYN1 were (1) EEG background and organization mainly normal; (2) interictal abnormalities are often rare or not visible on EEG; (3) more than 60% of patients had reflex seizures (cutaneous contact with water and defecation being the main triggers) isolated or associated with spontaneous seizures; (4) electro-clinical semiology of seizures was mainly temporal or temporo-insulo/perisylvian with a notable autonomic component; and (5) ictal EEG showed a characteristic rhythmic theta/delta activity predominating in temporo-perisylvian regions at the beginning of most seizures. Comparing patients with SYN1 to healthy subjects, we observed a shift to lower frequency bands in power spectrum of interictal EEG and an increased connectivity in both temporal regions. INTERPRETATION: A distinct epilepsy syndrome emerges in patients with SYN1, with a rather characteristic clinical and EEG pattern suggesting predominant temporo-insular involvement. ANN NEUROL 2024.

7.
Genes (Basel) ; 15(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39202393

RESUMO

Bi-allelic disruptive variants (nonsense, frameshift, and splicing variants) in KDM5B have been identified as causative for autosomal recessive intellectual developmental disorder type 65. In contrast, dominant variants, usually disruptive as well, have been more difficult to implicate in a specific phenotype, since some of them have been found in unaffected controls or relatives. Here, we describe individuals with likely pathogenic variants in KDM5B, including eight individuals with dominant missense variants. This study is a retrospective case series of 21 individuals with variants in KDM5B. We performed deep phenotyping and collected the clinical information and molecular data of these individuals' family members. We compared the phenotypes according to variant type and to those previously described in the literature. The most common features were developmental delay, impaired intellectual development, behavioral problems, autistic behaviors, sleep disorders, facial dysmorphism, and overgrowth. DD, ASD behaviors, and sleep disorders were more common in individuals with dominant disruptive KDM5B variants, while individuals with dominant missense variants presented more frequently with renal and skin anomalies. This study extends our understanding of the KDM5B-related neurodevelopmental disorder and suggests the pathogenicity of certain dominant KDM5B missense variants.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Mutação de Sentido Incorreto , Fenótipo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Feminino , Masculino , Criança , Pré-Escolar , Adolescente , Adulto , Estudos de Associação Genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Estudos Retrospectivos , Lactente , Genótipo , Proteínas Nucleares , Proteínas Repressoras
8.
Pediatr Neurol ; 160: 45-53, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39181022

RESUMO

BACKGROUND: GTPases of the Rab family are important orchestrators of membrane trafficking, and their dysregulation has been linked to a variety of neuropathologies. In 2017, we established a causal link between RAB11A variants and developmental and epileptic encephalopathy. In this study, we expand the phenotype of RAB11A-associated neurodevelopmental disorder and explore genotype-phenotype correlations. METHODS: We assessed 16 patients with pathogenic or likely pathogenic RAB11A variants, generally de novo, heterozygous missense variants. One individual had a homozygous nonsense variant, although concomitant with a pathogenic LAMA2 variant, which made their respective contributions to the phenotype difficult to discriminate. RESULTS: We reinforce the finding that certain RAB11A missense variants lead to intellectual disability and developmental delays. Other clinical features might include gait disturbances, hypotonia, magnetic resonance imaging abnormalities, visual anomalies, dysmorphisms, early adrenarche, and obesity. Epilepsy seems to be less common and linked to variants outside the binding sites. Individuals with variants in the binding sites seem to have a more multisystemic, nonepileptic phenotype. CONCLUSIONS: Similar to other Rab-related disorders, RAB11A-associated neurodevelopmental disorder can also impact gait, tonus, brain anatomy and physiology, vision, adrenarche, and body weight and structure. Epilepsy seems to affect the minority of patients with variants outside the binding sites.


Assuntos
Estudos de Associação Genética , Transtornos do Neurodesenvolvimento , Proteínas rab de Ligação ao GTP , Humanos , Proteínas rab de Ligação ao GTP/genética , Masculino , Criança , Feminino , Transtornos do Neurodesenvolvimento/genética , Pré-Escolar , Adolescente , Estudos de Coortes , Mutação de Sentido Incorreto , Fenótipo , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico por imagem , Epilepsia/genética , Epilepsia/fisiopatologia , Epilepsia/diagnóstico por imagem , Lactente , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/etiologia
10.
N Engl J Med ; 390(21): 1985-1997, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38838312

RESUMO

BACKGROUND: Genetic variants that cause rare disorders may remain elusive even after expansive testing, such as exome sequencing. The diagnostic yield of genome sequencing, particularly after a negative evaluation, remains poorly defined. METHODS: We sequenced and analyzed the genomes of families with diverse phenotypes who were suspected to have a rare monogenic disease and for whom genetic testing had not revealed a diagnosis, as well as the genomes of a replication cohort at an independent clinical center. RESULTS: We sequenced the genomes of 822 families (744 in the initial cohort and 78 in the replication cohort) and made a molecular diagnosis in 218 of 744 families (29.3%). Of the 218 families, 61 (28.0%) - 8.2% of families in the initial cohort - had variants that required genome sequencing for identification, including coding variants, intronic variants, small structural variants, copy-neutral inversions, complex rearrangements, and tandem repeat expansions. Most families in which a molecular diagnosis was made after previous nondiagnostic exome sequencing (63.5%) had variants that could be detected by reanalysis of the exome-sequence data (53.4%) or by additional analytic methods, such as copy-number variant calling, to exome-sequence data (10.8%). We obtained similar results in the replication cohort: in 33% of the families in which a molecular diagnosis was made, or 8% of the cohort, genome sequencing was required, which showed the applicability of these findings to both research and clinical environments. CONCLUSIONS: The diagnostic yield of genome sequencing in a large, diverse research cohort and in a small clinical cohort of persons who had previously undergone genetic testing was approximately 8% and included several types of pathogenic variation that had not previously been detected by means of exome sequencing or other techniques. (Funded by the National Human Genome Research Institute and others.).


Assuntos
Variação Genética , Doenças Raras , Sequenciamento Completo do Genoma , Feminino , Humanos , Masculino , Estudos de Coortes , Exoma , Sequenciamento do Exoma , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/etnologia , Doenças Genéticas Inatas/genética , Testes Genéticos , Genoma Humano , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/etnologia , Doenças Raras/genética , Análise de Sequência de DNA , Criança , Adolescente , Adulto Jovem , Adulto
11.
Genet Med ; 26(8): 101170, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38818797

RESUMO

PURPOSE: KBG syndrome (KBGS) is a rare neurodevelopmental syndrome caused by haploinsufficiency of ANKRD11. The childhood phenotype is extensively reported but limited for adults. Thus, we aimed to delineate the clinical features of KBGS. METHODS: We collected physician-reported data of adults with molecularly confirmed KBGS through an international collaboration. Moreover, we undertook a systematic literature review to determine the scope of previously reported data. RESULTS: The international collaboration identified 36 adults from 31 unrelated families with KBGS. Symptoms included mild/borderline intellectual disability (n = 22); gross and/or fine motor difficulties (n = 15); psychiatric and behavioral comorbidities including aggression, anxiety, reduced attention span, and autistic features (n = 26); nonverbal (n = 3), seizures with various seizure types and treatment responses (n = 10); ophthalmological comorbidities (n = 20). Cognitive regression during adulthood was reported once. Infrequent features included dilatation of the ascending aorta (n = 2) and autoimmune conditions (n = 4). Education, work, and residence varied, and the diversity of professional and personal roles highlighted the range of abilities seen. The literature review identified 154 adults reported across the literature, and we have summarized the features across both data sets. CONCLUSION: Our study sheds light on the long-term neurodevelopmental outcomes, seizures, behavioral and psychiatric features, and education, work, and living arrangements for adults with KBGS.


Assuntos
Deficiência Intelectual , Fenótipo , Humanos , Adulto , Deficiência Intelectual/genética , Deficiência Intelectual/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Haploinsuficiência/genética , Convulsões/genética , Convulsões/epidemiologia , Médicos , Adolescente , Fácies , Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Anormalidades Dentárias
12.
Am J Hum Genet ; 111(6): 1206-1221, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772379

RESUMO

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Assuntos
Transtornos do Neurodesenvolvimento , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Epilepsia/genética , Sequenciamento do Exoma , Doenças Genéticas Ligadas ao Cromossomo X/genética , Heterozigoto , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Fenótipo , Canais de Potássio Shal/genética
13.
Eur J Hum Genet ; 32(8): 928-937, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38678163

RESUMO

Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.


Assuntos
Histonas , Fenótipo , Humanos , Masculino , Feminino , Histonas/genética , Criança , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Pré-Escolar , Adolescente , Adulto , Deficiência Intelectual/genética , Deficiência Intelectual/patologia
14.
Am J Hum Genet ; 111(4): 742-760, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479391

RESUMO

FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Animais , Criança , Humanos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiência Intelectual/genética , Mamíferos , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Drosophila
15.
medRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37503210

RESUMO

Dysmorphologists sometimes encounter challenges in recognizing disorders due to phenotypic variability influenced by factors such as age and ethnicity. Moreover, the performance of Next Generation Phenotyping Tools such as GestaltMatcher is dependent on the diversity of the training set. Therefore, we developed GestaltMatcher Database (GMDB) - a global reference for the phenotypic variability of rare diseases that complies with the FAIR-principles. We curated dysmorphic patient images and metadata from 2,224 publications, transforming GMDB into an online dynamic case report journal. To encourage clinicians worldwide to contribute, each case can receive a Digital Object Identifier (DOI), making it a citable micro-publication. This resulted in a collection of 2,312 unpublished images, partly with longitudinal data. We have compiled a collection of 10,189 frontal images from 7,695 patients representing 683 disorders. The web interface enables gene- and phenotype-centered queries for registered users (https://db.gestaltmatcher.org/). Despite the predominant European ancestry of most patients (59%), our global collaborations have facilitated the inclusion of data from frequently underrepresented ethnicities, with 17% Asian, 4% African, and 6% with other ethnic backgrounds. The analysis has revealed a significant enhancement in GestaltMatcher performance across all ethnic groups, incorporating non-European ethnicities, showcasing a remarkable increase in Top-1-Accuracy by 31.56% and Top-5-Accuracy by 12.64%. Importantly, this improvement was achieved without altering the performance metrics for European patients. GMDB addresses dysmorphology challenges by representing phenotypic variability and including underrepresented groups, enhancing global diagnostic rates and serving as a vital clinician reference database.

16.
Epilepsia ; 65(4): 1029-1045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135915

RESUMO

OBJECTIVE: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.


Assuntos
Encefalopatias , Epilepsia Generalizada , Epilepsia , Deficiência Intelectual , Humanos , Estudos Retrospectivos , Hipotonia Muscular , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/complicações , Encefalopatias/genética , Convulsões/complicações , Epilepsia Generalizada/complicações , Eletroencefalografia/métodos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína 4 Homóloga a Disks-Large/genética
17.
Genet Med ; 25(11): 100950, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37551667

RESUMO

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Micrognatismo , Transtornos do Neurodesenvolvimento , Humanos , Anormalidades Múltiplas/genética , Face , Micrognatismo/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Fácies , Fenótipo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
18.
Neurology ; 101(9): e879-e891, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37407264

RESUMO

BACKGROUND AND OBJECTIVES: Pathogenic variants in STXBP1 are among the major genetic causes of neurodevelopmental disorders. Despite the increasing number of individuals diagnosed without a history of epilepsy, little is known about the natural history and developmental trajectories in this subgroup and endpoints for future therapeutic studies are limited to seizure control. METHODS: We performed a cross-sectional retrospective study using standardized questionnaires for clinicians and caregivers of individuals with STXBP1-related disorders capturing medical histories, genetic findings, and developmental outcomes. Motor and language function were assessed using Gross Motor Function Classification System (GMFCS) scores and a speech impairment score and were compared within and across clinically defined subgroups. RESULTS: We collected data of 71 individuals with STXBP1-related disorders, including 44 previously unreported individuals. Median age at inclusion was 5.3 years (interquartile range 3.5-9.3) with the oldest individual aged 43.8 years. Epilepsy was absent in 18/71 (25%) of individuals. The range of developmental outcomes was broad, including 2 individuals presenting with close to age-appropriate motor development. Twenty-nine of 61 individuals (48%) were able to walk unassisted, and 24/69 (35%) were able to speak single words. Individuals without epilepsy presented with a similar onset and spectrum of phenotypic features but had lower GMFCS scores (median 3 vs 4, p < 0.01) than individuals with epilepsy. Individuals with epileptic spasms were less likely to walk unassisted than individuals with other seizure types (6% vs 58%, p < 0.01). Individuals with early epilepsy onset had higher speech impairment scores (p = 0.02) than individuals with later epilepsy onset. DISCUSSION: We expand the spectrum of STXBP1-related disorders and provide clinical features and developmental trajectories in individuals with and without a history of epilepsy. Individuals with epilepsy, in particular epileptic spasms, and neonatal or early-onset presented with less favorable motor and language functional outcomes compared with individuals without epilepsy. These findings identify children at risk for severe disease and can serve as comparator for future interventional studies in STXBP1-related disorders.


Assuntos
Epilepsia , Espasmos Infantis , Criança , Pré-Escolar , Humanos , Estudos Transversais , Proteínas Munc18/genética , Mutação , Estudos Retrospectivos , Convulsões , Espasmo , Espasmos Infantis/genética , Distúrbios da Fala , Adulto
19.
Am J Hum Genet ; 110(7): 1110-1122, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37369202

RESUMO

Previous studies suggested that severe epilepsies, e.g., developmental and epileptic encephalopathies (DEEs), are mainly caused by ultra-rare de novo genetic variants. For milder disease, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 control individuals. Here, we separately analyzed three different groups of epilepsies: severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in control individuals with an allele count ≥ 1 and a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD ≥ 20), and to have an odds ratio in individuals with epilepsy ≥ 2. We identified genes enriched with QRVs primarily in NAFE (n = 72), followed by GGE (n = 32) and DEE (n = 21). This suggests that rare variants may play a more important role for causality of NAFE than for DEE. Moreover, we found that genes harboring QRVs, e.g., HSGP2, FLNA, or TNC, encode proteins that are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE that occur also in the general population, while in DEE and GGE, the contribution of such variants appears more limited.


Assuntos
Epilepsia Generalizada , Humanos , Epilepsia Generalizada/genética , Fenótipo , Alelos , Encéfalo , Frequência do Gene/genética
20.
Genet Med ; 25(8): 100863, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37125634

RESUMO

PURPOSE: Bone morphogenic proteins (BMPs) regulate gene expression that is related to many critical developmental processes, including osteogenesis for which they are named. In addition, BMP2 is widely expressed in cells of mesenchymal origin, including bone, cartilage, skeletal and cardiac muscle, and adipose tissue. It also participates in neurodevelopment by inducing differentiation of neural stem cells. In humans, BMP2 variants result in a multiple congenital anomaly syndrome through a haploinsufficiency mechanism. We sought to expand the phenotypic spectrum and highlight phenotypes of patients harboring monoallelic missense variants in BMP2. METHODS: We used retrospective chart review to examine phenotypes from an international cohort of 18 individuals and compared these with published cases. Patient-derived missense variants were modeled in zebrafish to examine their effect on the ability of bmp2b to promote embryonic ventralization. RESULTS: The presented cases recapitulated existing descriptions of BMP2-related disorders, including craniofacial, cardiac, and skeletal anomalies and exhibit a wide phenotypic spectrum. We also identified patients with neural tube defects, structural brain anomalies, and endocrinopathies. Missense variants modeled in zebrafish resulted in loss of protein function. CONCLUSION: We use this expansion of reported phenotypes to suggest multidisciplinary medical monitoring and management of patients with BMP2-related skeletal dysplasia spectrum.


Assuntos
Osteocondrodisplasias , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Estudos Retrospectivos , Diferenciação Celular , Osteogênese/genética , Proteínas Morfogenéticas Ósseas , Proteína Morfogenética Óssea 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA