Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 10(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560518

RESUMO

This study aimed to evaluate the efficacy of a new trivalent vaccine containing inactivated Porcine Circovirus 1-2a and 1-2b chimeras and a Mycoplasma hyopneumoniae bacterin administered to pigs around 3 weeks of age. This trivalent vaccine has already been proved as efficacious in a split-dose regimen but has not been tested in a single-dose scenario. For this purpose, a total of four studies including two pre-clinical and two clinical studies were performed. Globally, a significant reduction in PCV-2 viraemia and faecal excretion was detected in vaccinated pigs compared to non-vaccinated animals, as well as lower histopathological lymphoid lesion plus PCV-2 immunohistochemistry scorings, and incidence of PCV-2-subclinical infection. Moreover, in field trial B, a significant increase in body weight and in average daily weight gain were detected in vaccinated animals compared to the non-vaccinated ones. Circulation of PCV-2b in field trial A and PCV-2a plus PCV-2d in field trial B was confirmed by virus sequencing. Hence, the efficacy of this new trivalent vaccine against a natural PCV-2a, PCV-2b or PCV-2d challenge was demonstrated in terms of reduction of histopathological lymphoid lesions and PCV-2 detection in tissues, serum and faeces, as well as improvement of production parameters.

2.
PLoS Pathog ; 18(11): e1010931, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350837

RESUMO

African swine fever virus (ASFV) is causing a worldwide pandemic affecting the porcine industry and leading to important global economic consequences. The virus causes a highly lethal hemorrhagic disease in wild boars and domestic pigs. Lack of effective vaccines hampers the control of virus spread, thus increasing the pressure on the scientific community for urgent solutions. However, knowledge on the immune components associated with protection is very limited. Here we characterized the in vitro recall response induced by immune cells from pigs intranasally vaccinated with the BA71ΔCD2 deletion mutant virus. Vaccination conferred dose-dependent cross-protection associated with both ASFV-specific antibodies and IFNγ-secreting cells. Importantly, bulk and single-cell transcriptomics of blood and lymph node cells from vaccinated pigs revealed a positive feedback from adaptive to innate immunity. Indeed, activation of Th1 and cytotoxic T cells was concomitant with a rapid IFNγ-dependent triggering of an inflammatory response characterized by TNF-producing macrophages, as well as CXCL10-expressing lymphocytes and cross-presenting dendritic cells. Altogether, this study provides a detailed phenotypic characterization of the immune cell subsets involved in cross-protection against ASFV, and highlights key functional immune mechanisms to be considered for the development of an effective ASF vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Proteínas Virais , Sus scrofa , Vacinação , Imunidade Inata
3.
Vaccines (Basel) ; 10(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36016122

RESUMO

Four studies under preclinical and clinical conditions were performed to evaluate the efficacy of a new trivalent vaccine against Porcine circovirus 2 (PCV-2) infection. The product contained inactivated PCV-1/PCV-2a (cPCV-2a) and PCV-1/PCV-2b (cPCV-2b) chimeras, plus M. hyopneumoniae inactivated cell-free antigens, which was administered to piglets in a two-dose regime at 3 days of age and 3 weeks later. The overall results of preclinical and clinical studies show a significant reduction in PCV-2 viraemia and faecal excretion, and lower histopathological lymphoid lesions and PCV-2 immunohistochemistry scores in vaccinated pigs when compared to non-vaccinated ones. Furthermore, in field trial A, a statistically significant reduction in the incidence of PCV-2-subclinical infection, an increase in body weight from 16 weeks of age to slaughterhouse and an average daily weight gain over the whole period (from 3 days of age to slaughterhouse) was detected in the vaccinated group when compared to the non-vaccinated one. Circulation of PCV-2a in field trial A, and PCV-2b plus PCV-2d in field trial B was confirmed by virus sequencing. In conclusion, a double immunization with a cPCV-2a/cPCV-2b/M. hyopneumoniae vaccine was efficacious against PCV-2 infection by reducing the number of histopathological lymphoid lesions and PCV-2 detection in tissues, serum, and faeces, as well as reducing losses in productive parameters.

4.
J Infect Dis ; 225(4): 587-592, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34904659

RESUMO

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since 2019 has made mask-wearing, physical distancing, hygiene, and disinfection complementary measures to control virus transmission. Especially for health facilities, we evaluated the efficacy of an UV-C autonomous robot to inactivate SARS-CoV-2 desiccated on potentially contaminated surfaces. ASSUM (autonomous sanitary sterilization ultraviolet machine) robot was used in an experimental box simulating a hospital intensive care unit room. Desiccated SARS-CoV-2 samples were exposed to UV-C in 2 independent runs of 5, 12, and 20 minutes. Residual virus was eluted from surfaces and viral titration was carried out in Vero E6 cells. ASSUM inactivated SARS-CoV-2 by ≥ 99.91% to ≥ 99.99% titer reduction with 12 minutes or longer of UV-C exposure and onwards and a minimum distance of 100cm between the device and the SARS-CoV-2 desiccated samples. This study demonstrates that ASSUM UV-C device is able to inactivate SARS-CoV-2 within a few minutes.


Assuntos
COVID-19 , Robótica , SARS-CoV-2/efeitos da radiação , Esterilização/métodos , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação , COVID-19/prevenção & controle , Hospitais , Humanos
5.
Vaccines (Basel) ; 9(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34358167

RESUMO

This study aimed to evaluate the immune response and protection correlates against influenza virus (IV) infection in pigs vaccinated with the novel NG34 HA1 vaccine candidate adjuvanted with either CAF®01 or CDA/αGalCerMPEG (αGCM). Two groups of six pigs each were vaccinated intramuscularly twice with either NG34 + CAF®01 or NG34 + CDA/αGCM. As controls, groups of animals (n = 6 or 4) either non-vaccinated or vaccinated with human seasonal trivalent influenza vaccine or NG34 + Freund's adjuvant were included in the study. All animal groups were challenged with the 2009 pandemic (pdm09) strain of H1N1 (total amount of 7 × 106 TCID50/mL) via intranasal and endotracheal routes 21 days after second vaccination. Reduced consolidated lung lesions were observed both on days three and seven post-challenge in the animals vaccinated with NG34 + CAF®01, whereas higher variability with relatively more severe lesions in pigs of the NG34 + CDA/αGCM group on day three post-infection. Among groups, animals vaccinated with NG34 + CDA/αGCM showed higher viral loads in the lung at seven days post infection whereas animals from NG34 + CAF®01 completely abolished virus from the lower respiratory tract. Similarly, higher IFNγ secretion and stronger IgG responses against the NG34 peptide in sera was observed in animals from the NG34 + CAF®01 group as compared to the NG34 + CDA/αGCM. NG34-vaccinated pigs with adjuvanted CAF®01 or CDA/αGCM combinations resulted in different immune responses as well as outcomes in pathology and viral shedding.

6.
Porcine Health Manag ; 7(1): 35, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902747

RESUMO

BACKGROUND: The objective of the present study was to explore the benefits of Porcine circovirus 2 (PCV-2) blanket vaccination in a sow herd on productive parameters, PCV-2 infection and immune status in sows and their progeny. For this purpose, 288 sows were distributed among four balanced experimental groups. One group remained as negative control group and the other three received 1 mL of PCV-2 Ingelvac Circoflex® intramuscularly at different productive cycle moments: before mating, mid gestation (42-49 days post-insemination) or late gestation (86-93 days post-insemination); phosphate buffered saline (PBS) was used as negative control item. Reproductive parameters from sows during gestation and body weight of their progeny from birth to weaning were recorded. Additionally, blood was collected from sows at each vaccination time and piglets at 3 weeks of age. Moreover, up to 4 placental umbilical cords (PUC) per sow were taken at peri-partum. Sera from sows and piglets were analysed for PCV-2 antibody detection using an enzyme-linked immunosorbent assay (ELISA). Sera from sows and PUC were tested to quantify viraemia using a real time quantitative polymerase chain reaction (qPCR) assay. RESULTS: Globally, results indicated that vaccinated sows showed heavier piglets at birth and at weaning, less cross-fostered piglets, lower viral load at farrowing as well as in PUC, and higher antibody levels at farrowing, compared to non-vaccinated ones. When all groups were compared among them, sows vaccinated at mid or late gestation had heavier piglets at birth than non-vaccinated sows, and lower proportion of PCV-2 positive PUC. Also, cross-fostering was less frequently practiced in sows vaccinated at pre-mating or mid gestation compared to non-vaccinated ones. CONCLUSIONS: In conclusion, the present study points out that PCV-2 sow vaccination at different time points of their physiological status (mimicking blanket vaccination) offers benefits at production and serological and virological levels.

7.
PLoS One ; 14(9): e0222201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31553755

RESUMO

Swine influenza virus (SIVs) infections cause a significant economic impact to the pork industry. Moreover, pigs may act as mixing vessel favoring genome reassortment of diverse influenza viruses. Such an example is the pandemic H1N1 (pH1N1) virus that appeared in 2009, harboring a combination of gene segments from avian, pig and human lineages, which rapidly reached pandemic proportions. In order to confront and prevent these possible emergences as well as antigenic drift phenomena, vaccination remains of vital importance. The present work aimed to evaluate a new DNA influenza vaccine based on distinct conserved HA-peptides fused with flagellin and applied together with Diluvac Forte as adjuvant using a needle-free device (IntraDermal Application of Liquids, IDAL®). Two experimental pig studies were performed to test DNA-vaccine efficacy against SIVs in pigs. In the first experiment, SIV-seronegative pigs were vaccinated with VC4-flagellin DNA and intranasally challenged with a pH1N1. In the second study, VC4-flagellin DNA vaccine was employed in SIV-seropositive animals and challenged intranasally with an H3N2 SIV-isolate. Both experiments demonstrated a reduction in the viral shedding after challenge, suggesting vaccine efficacy against both the H1 and H3 influenza virus subtypes. In addition, the results proved that maternally derived antibodies (MDA) did not constitute an obstacle to the vaccine approach used. Moreover, elevated titers in antibodies both against H1 and H3 proteins in serum and in bronchoalveolar lavage fluids (BALFs) was detected in the vaccinated animals along with a markedly increased mucosal IgA response. Additionally, vaccinated animals developed stronger neutralizing antibodies in BALFs and higher inhibiting hemagglutination titers in sera against both the pH1N1 and H3N2 influenza viruses compared to unvaccinated, challenged-pigs. It is proposed that the described DNA-vaccine formulation could potentially be used as a multivalent vaccine against SIV infections.


Assuntos
Vacinas contra Influenza/uso terapêutico , Infecções por Orthomyxoviridae/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas de DNA/uso terapêutico , Animais , Sequência Conservada , Feminino , Hemaglutininas/genética , Hemaglutininas/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Masculino , Infecções por Orthomyxoviridae/imunologia , Suínos/imunologia , Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinas de DNA/imunologia
8.
PLoS One ; 14(3): e0212431, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30822308

RESUMO

Swine influenza viruses (SIVs), the causal agents of swine influenza, are not only important to control due to the economic losses in the swine industry, but also can be pandemic pathogens. Vaccination is one of the most relevant strategies to control and prevent influenza infection. Current human vaccines against influenza induce strain-specific immunity and annual update is required due to the virus antigenic shift phenomena. Previously, our group has reported the use of conserved hemagglutinin peptides (HA-peptides) derived from H1-influenza virus as a potential multivalent vaccine candidate. Immunization of swine with these HA-peptides elicited antibodies that recognized and neutralized heterologous influenza viruses in vitro and demonstrated strong hemagglutination-inhibiting activity. In the present work, we cloned one HA-peptide (named NG34) into a plasmid fused with cytotoxic T lymphocyte-associated antigen (CTLA4) which is a molecule that modifies T cell activation and with an adjuvant activity interfering with the adaptive immune response. The resulting plasmid, named pCMV-CTLA4-Ig-NG34, was administered twice to animals employing a needle-free delivery approach. Two studies were carried out to test the efficacy of pCMV-CTLA4-Ig-NG34 as a potential swine influenza vaccine, one in seronegative and another in seropositive pigs against SIV. The second one was aimed to evaluate whether pCMV-CTLA4-Ig-NG34 vaccination would overcome maternally derived antibodies (MDA). After immunization, all animals were intranasally challenged with an H3N2 influenza strain. A complete elimination or significant reduction in the viral shedding was observed within the first week after the challenge in the vaccinated animals from both studies. In addition, no challenged heterologous virus load was detected in the airways of vaccinated pigs. Overall, it is suggested that the pCMV-CTLA4-Ig-NG34 vaccine formulation could potentially be used as a multivalent vaccine against influenza viruses.


Assuntos
Abatacepte , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Peptídeos , Doenças dos Suínos , Vacinas de DNA , Eliminação de Partículas Virais , Abatacepte/genética , Abatacepte/imunologia , Abatacepte/farmacologia , Animais , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/farmacologia , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Peptídeos/genética , Peptídeos/imunologia , Peptídeos/farmacologia , Plasmídeos/genética , Plasmídeos/imunologia , Plasmídeos/farmacologia , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Vacinação , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia , Eliminação de Partículas Virais/efeitos dos fármacos , Eliminação de Partículas Virais/genética , Eliminação de Partículas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA