Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biomedicines ; 12(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38672225

RESUMO

BACKGROUND: While 'immuno-competence' is a well-known term, it lacks an operational definition. To address this omission, this study explored whether the temporal and structured data of the complete blood cell count (CBC) can rapidly estimate immuno-competence. To this end, one or more ratios that included data on all monocytes, lymphocytes and neutrophils were investigated. MATERIALS AND METHODS: Longitudinal CBC data collected from 101 COVID-19 patients (291 observations) were analyzed. Dynamics were estimated with several approaches, which included non-structured (the classic CBC format) and structured data. Structured data were assessed as complex ratios that capture multicellular interactions among leukocytes. In comparing survivors with non-survivors, the hypothesis that immuno-competence may exhibit feedback-like (oscillatory or cyclic) responses was tested. RESULTS: While non-structured data did not distinguish survivors from non-survivors, structured data revealed immunological and statistical differences between outcomes: while survivors exhibited oscillatory data patterns, non-survivors did not. In survivors, many variables (including IL-6, hemoglobin and several complex indicators) showed values above or below the levels observed on day 1 of the hospitalization period, displaying L-shaped data distributions (positive kurtosis). In contrast, non-survivors did not exhibit kurtosis. Three immunologically defined data subsets included only survivors. Because information was based on visual patterns generated in real time, this method can, potentially, provide information rapidly. DISCUSSION: The hypothesis that immuno-competence expresses feedback-like loops when immunological data are structured was not rejected. This function seemed to be impaired in immuno-suppressed individuals. While this method rapidly informs, it is only a guide that, to be confirmed, requires additional tests. Despite this limitation, the fact that three protective (survival-associated) immunological data subsets were observed since day 1 supports many clinical decisions, including the early and personalized prognosis and identification of targets that immunomodulatory therapies could pursue. Because it extracts more information from the same data, structured data may replace the century-old format of the CBC.

2.
Mol Aspects Med ; 91: 101151, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36371228

RESUMO

With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Inteligência Artificial , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA