Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zookeys ; 1012: 55-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584108

RESUMO

Knowledge on species taxonomic identity is essential to understand biological and biogeographical processes and for studies on biodiversity. Species the genus Tremoctopus have been confused in the past and are inconsistently identified. To clarify of the taxonomic diagnosis Tremoctopus violaceus Delle Chiaje, 1830, an evaluation of morphological and meristic characters, as well as morphometric indices and genetic analyses, was undertaken. The analyzed octopod was an opportunistically collected mature female of 640 mm in total length, with a mantle length of 135 mm and a total weight of 1.02 kg. Evidence of autotomy as a defensive mechanism for protecting the egg mass is presented. The 16S haplotype sequenced from this specimen represents the first one publicly available for this species from the Gulf of Mexico. The genetic divergence between this haplotype and those reported from the Pacific Ocean is representative of interspecific variation in other taxa, which suggests that "T. violaceus" in the Pacific Ocean (KY649286, MN435565, and AJ252767) should be addressed as T. gracilis instead. Genetic evidence to separate T. violaceus and T. gracilis is presented. The studied specimen from the Gulf of Mexico represents the westernmost known occurrence of T. violaceus and the first record from the southwestern Gulf of Mexico.

2.
PeerJ ; 6: e6015, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564516

RESUMO

The common octopus of the Veracruz Reef System (VRS, southwestern Gulf of Mexico) has historically been considered as Octopus vulgaris, and yet, to date, no study including both morphological and genetic data has tested that assumption. To assess this matter, 52 octopuses were sampled in different reefs within the VRS to determine the taxonomic identity of this commercially valuable species using an integrative taxonomic approach through both morphological and genetic analyses. Morphological and genetic data confirmed that the common octopus of the VRS is not O. vulgaris and determined that it is, in fact, the recently described O. insularis. Morphological measurements, counts, indices, and other characteristics such as specific colour patterns, closely matched what had been reported for O. insularis in Brazil. In addition, sequences from cytochrome oxidase I (COI) and 16S ribosomal RNA (r16S) mitochondrial genes confirmed that the common octopus from the VRS is in the same highly supported clade as O. insularis from Brazil. Genetic distances of both mitochondrial genes as well as of cytochrome oxidase subunit III (COIII) and novel nuclear rhodopsin sequences for the species, also confirmed this finding (0-0.8%). We discuss our findings in the light of the recent reports of octopus species misidentifications involving the members of the 'O. vulgaris species complex' and underscore the need for more morphological studies regarding this group to properly address the management of these commercially valuable and similar taxa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA