Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 114(3): 318-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25388142

RESUMO

Genome-wide mapping approaches in diverse populations are powerful tools to unravel the genetic architecture of complex traits. The main goals of our study were to investigate the potential and limits to unravel the genetic architecture and to identify the factors determining the accuracy of prediction of the genotypic variation of Fusarium head blight (FHB) resistance in wheat (Triticum aestivum L.) based on data collected with a diverse panel of 372 European varieties. The wheat lines were phenotyped in multi-location field trials for FHB resistance and genotyped with 782 simple sequence repeat (SSR) markers, and 9k and 90k single-nucleotide polymorphism (SNP) arrays. We applied genome-wide association mapping in combination with fivefold cross-validations and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected quantitative trait loci (QTLs). Using a random sample of markers not selected for marker-trait associations revealed only a slight decrease in prediction accuracy compared with marker-based selection exploiting the QTL information. The same picture was confirmed in a simulation study, suggesting that relatedness is a main driver of the accuracy of prediction in marker-assisted selection of FHB resistance. When the accuracy of prediction of three genomic selection models was contrasted for the three marker data sets, no significant differences in accuracies among marker platforms and genomic selection models were observed. Marker density impacted the accuracy of prediction only marginally. Consequently, genomic selection of FHB resistance can be implemented most cost-efficiently based on low- to medium-density SNP arrays.


Assuntos
Resistência à Doença/genética , Fusarium , Locos de Características Quantitativas , Triticum/genética , Cruzamento , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Modelos Lineares , Repetições de Microssatélites , Modelos Genéticos , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Triticum/microbiologia
2.
Genome ; 53(11): 948-56, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21076510

RESUMO

Oilseed rape (Brassica napus) is an allotetraploid species consisting of two genomes, derived from B. rapa (A genome) and B. oleracea (C genome). The presence of these two genomes makes single nucleotide polymorphism (SNP) marker identification and SNP analysis more challenging than in diploid species, as for a given locus usually two versions of a DNA sequence (based on the two ancestral genomes) have to be analyzed simultaneously during SNP identification and analysis. One hundred amplicons derived from expressed sequence tag (ESTs) were analyzed to identify SNPs in a panel of oilseed rape varieties and within two sister species representing the ancestral genomes. A total of 604 SNPs were identified, averaging one SNP in every 42 bp. It was possible to clearly discriminate SNPs that are polymorphic between different plant varieties from SNPs differentiating the two ancestral genomes. To validate the identified SNPs for their use in genetic analysis, we have developed Illumina GoldenGate assays for some of the identified SNPs. Through the analysis of a number of oilseed rape varieties and mapping populations with GoldenGate assays, we were able to identify a number of different segregation patterns in allotetraploid oilseed rape. The majority of the identified SNP markers can be readily used for genetic mapping, showing that amplicon sequencing and Illumina GoldenGate assays can be used to reliably identify SNP markers in tetraploid oilseed rape and to convert them into successful SNP assays that can be used for genetic analysis.


Assuntos
Alelos , Brassica napus/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Cromossomos de Plantas , Etiquetas de Sequências Expressas , Genoma de Planta , Análise de Sequência de DNA
3.
Theor Appl Genet ; 93(7): 1026-32, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24162476

RESUMO

The three B genomes of Brassica contained in B. nigra, B. carinata and B. juncea were dissected by addition in B. napus. Using phenotypic, isozyme and molecular markers we characterized 8 alien B-genome chromosomes from B. nigra and B. carinata and 7 from B. juncea by constructing synteney groups. The alien chromosomes of the three different sources showed extensive intragenomic recombinations that were detected by the presence of the same loci in more than one synteny group but flanked by different markers. In addition, intergenomic recombinations were observed. These were evident in euploid AACC plants of the rapeseed phenotype derived from the addition lines carrying a few markers from the B genome due to translocations and recombinations between non-homoeologous chromosomes. The high plasticity of the Brassica genomes may have been an powerful factor in directing their evolution by hybridization and amphiploidy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA