Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662238

RESUMO

Bladder cancers (BCs) can be divided into 2 major subgroups displaying distinct clinical behaviors and mutational profiles: basal/squamous (BASQ) tumors that tend to be muscle invasive, and luminal/papillary (LP) tumors that are exophytic and tend to be non-invasive. Pparg is a likely driver of LP BC and has been suggested to act as a tumor suppressor in BASQ tumors, where it is likely suppressed by MEK-dependent phosphorylation. Here we tested the effects of rosiglitazone, a Pparg agonist, in a mouse model of BBN-induced muscle invasive BC. Rosiglitazone activated Pparg signaling in suprabasal epithelial layers of tumors but not in basal-most layers containing highly proliferative invasive cells, reducing proliferation but not affecting tumor survival. Addition of trametinib, a MEK inhibitor, induced Pparg signaling throughout all tumor layers, and eradicated 91% of tumors within 7-days of treatment. The 2-drug combination also activated a luminal differentiation program, reversing squamous metaplasia in the urothelium of tumor-bearing mice. Paired ATAC-RNA-seq analysis revealed that tumor apoptosis was most likely linked to down-regulation of Bcl-2 and other pro-survival genes, while the shift from BASQ to luminal differentiation was associated with activation of the retinoic acid pathway and upregulation of Kdm6a, a lysine demethylase that facilitates retinoid-signaling. Our data suggest that rosiglitazone, trametinib, and retinoids, which are all FDA approved, may be clinically active in BASQ tumors in patients. That muscle invasive tumors are populated by basal and suprabasal cell types with different responsiveness to PPARG agonists will be an important consideration when designing new treatments.

2.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35521701

RESUMO

The urothelium of the bladder functions as a waterproof barrier between tissue and outflowing urine. Largely quiescent during homeostasis, this unique epithelium rapidly regenerates in response to bacterial or chemical injury. The specification of the proper cell types during development and injury repair is crucial for tissue function. This Review surveys the current understanding of urothelial progenitor populations in the contexts of organogenesis, regeneration and tumorigenesis. Furthermore, we discuss pathways and signaling mechanisms involved in urothelial differentiation, and consider the relevance of this knowledge to stem cell biology and tissue regeneration.


Assuntos
Transformação Celular Neoplásica , Urotélio , Diferenciação Celular/fisiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Células-Tronco , Bexiga Urinária , Urotélio/fisiologia
3.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716260

RESUMO

The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2-Murine Double Minute X (MDM2-MDMX) heterodimer. The role of MDM2-MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumor-derived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and messenger RNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Tumoral p73/metabolismo , Animais , Apoptose , Ciclo Celular/fisiologia , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA