Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659794

RESUMO

Pulmonary Mycobacterium tuberculosis (Mtb) infection results in highly heterogeneous lesions ranging from granulomas with central necrosis to those primarily comprised of alveolitis. While alveolitis has been associated with prior immunity in human post-mortem studies, the drivers of these distinct pathologic outcomes are poorly understood. Here, we show that these divergent lesion structures can be modeled in C3HeB/FeJ mice and are regulated by prior immunity. Using quantitative imaging, scRNAseq, and flow cytometry, we demonstrate that Mtb infection in the absence of prior immunity elicits dysregulated neutrophil recruitment and necrotic granulomas. In contrast, prior immunity induces rapid recruitment and activation of T cells, local macrophage activation, and diminished late neutrophil responses. Depletion studies at distinct infection stages demonstrated that neutrophils are required for early necrosis initiation and necrosis propagation at chronic stages, whereas early CD4 T cell responses prevent neutrophil feedforward circuits and necrosis. Together, these studies reveal fundamental determinants of tuberculosis lesion structure and pathogenesis, which have important implications for new strategies to prevent or treat tuberculosis.

2.
Nat Microbiol ; 9(4): 949-963, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528148

RESUMO

A polymorphism causing deficiencies in Toll-interacting protein (TOLLIP), an inhibitory adaptor protein affecting endosomal trafficking, is associated with increased tuberculosis (TB) risk. It is, however, unclear how TOLLIP affects TB pathogenesis. Here we show that TB severity is increased in Tollip-/- mice, characterized by macrophage- and T cell-driven inflammation, foam cell formation and lipid accumulation. Tollip-/- alveolar macrophages (AM) specifically accumulated lipid and underwent necrosis. Transcriptional and protein analyses of Mycobacterium tuberculosis (Mtb)-infected, Tollip-/- AM revealed increased EIF2 signalling and downstream upregulation of the integrated stress response (ISR). These phenotypes were linked, as incubation of the Mtb lipid mycolic acid with Mtb-infected Tollip-/- AM activated the ISR and increased Mtb replication. Correspondingly, the ISR inhibitor, ISRIB, reduced Mtb numbers in AM and improved Mtb control, overcoming the inflammatory phenotype. In conclusion, targeting the ISR offers a promising target for host-directed anti-TB therapy towards improved Mtb control and reduced immunopathology.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Macrófagos Alveolares/microbiologia , Tuberculose/microbiologia , Mycobacterium tuberculosis/fisiologia , Macrófagos/microbiologia , Lipídeos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
PLoS Pathog ; 19(11): e1011825, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011264

RESUMO

Despite widespread immunization with Bacille-Calmette-Guérin (BCG), the only currently licensed tuberculosis (TB) vaccine, TB remains a leading cause of mortality globally. There are many TB vaccine candidates in the developmental pipeline, but the lack of a robust animal model to assess vaccine efficacy has hindered our ability to prioritize candidates for human clinical trials. Here we use a murine ultra-low dose (ULD) Mycobacterium tuberculosis (Mtb) challenge model to assess protection conferred by BCG vaccination. We show that BCG confers a reduction in lung bacterial burdens that is more durable than that observed after conventional dose challenge, curbs Mtb dissemination to the contralateral lung, and, in a small percentage of mice, prevents detectable infection. These findings are consistent with the ability of human BCG vaccination to mediate protection, particularly against disseminated disease, in specific human populations and clinical settings. Overall, our findings demonstrate that the ultra-low dose Mtb infection model can measure distinct parameters of immune protection that cannot be assessed in conventional dose murine infection models and could provide an improved platform for TB vaccine testing.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Animais , Camundongos , Humanos , Vacina BCG , Modelos Animais de Doenças , Vacinação
4.
iScience ; 26(6): 106963, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378347

RESUMO

Bacillus Calmette-Guérin (BCG) remains the only approved tuberculosis (TB) vaccine despite limited efficacy. Preclinical studies of next-generation TB vaccines typically use a murine aerosol model with a supraphysiologic challenge dose. Here, we show that the protective efficacy of a live attenuated Mycobacterium tuberculosis (Mtb) vaccine ΔLprG markedly exceeds that of BCG in a low-dose murine aerosol challenge model. BCG reduced bacterial loads but did not prevent establishment or dissemination of infection in this model. In contrast, ΔLprG prevented detectable infection in 61% of mice and resulted in anatomic containment of 100% breakthrough infections to a single lung. Protection was partially abrogated in a repeated low-dose challenge model, which showed serum IL-17A, IL-6, CXCL2, CCL2, IFN-γ, and CXCL1 as correlates of protection. These data demonstrate that ΔLprG provides increased protection compared to BCG, including reduced detectable infection and anatomic containment, in a low-dose murine challenge model.

5.
Microbiol Spectr ; 10(6): e0249122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314979

RESUMO

Whether antibiotic treatment during gestation impacts T cell immunity to vaccination in offspring is unexplored. Dams treated with polymyxin B (PMB) during gestation (Mg) displayed altered microbial communities prior to delivery compared to control dams (Mc). Differences in microbiota were also evident in pups born to polymyxin B-treated dams (Pg) compared to control pups (Pc). When pups were immunized with Bacille Calmette-Guerin (BCG), we observed no difference in TB10.4-specific T cells between Pc and Pg 4 weeks postimmunization. Significantly fewer splenic CD4 T cells from BCG-vaccinated Pg produced interleukin-2 (IL-2) upon stimulation, suggesting a possible functional deficiency. There was no difference in purified protein derivative (PPD)-specific IgG between Pc and Pg at this time point. However, when infected with Mycobacterium tuberculosis, Pg displayed significantly higher bacterial burden in the lung than Pc. Our results show that maternal PMB treatment during gestation may not impact splenic antigen-specific T cell responses following BCG vaccination but alters susceptibility to M. tuberculosis in offspring. IMPORTANCE The composition of the pioneer microbiota that colonize the infant gut are determined by the mother. Polymyxin B-induced changes in the maternal microbiota during pregnancy impact the offspring gut microbiota but not vaccine-specific CD4 T cell response. However, when infected with Mycobacterium tuberculosis, offspring born to mothers with an altered gut microbiota are susceptible to infection compared to those born to mothers not exposed to antibiotics.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Feminino , Gravidez , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Vacina BCG , Linfócitos T CD4-Positivos , Polimixina B/farmacologia , Vacinação , Animais
6.
Cell Host Microbe ; 29(4): 594-606.e6, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33711270

RESUMO

CD4 T cell effector function is required for optimal containment of Mycobacterium tuberculosis (Mtb) infection. IFNÉ£ produced by CD4 T cells is a key cytokine that contributes to protection. However, lung-infiltrating CD4 T cells have a limited ability to produce IFNÉ£, and IFNÉ£ plays a lesser protective role within the lung than at sites of Mtb dissemination. In a murine infection model, we observed that IFNÉ£ production by Mtb-specific CD4 T cells is rapidly extinguished within the granuloma but not within unaffected lung regions, suggesting localized immunosuppression. We identified a signature of TGFß signaling within granuloma-infiltrating T cells in both mice and rhesus macaques. Selective blockade of TGFß signaling in T cells resulted in an accumulation of terminally differentiated effector CD4 T cells, improved IFNÉ£ production within granulomas, and reduced bacterial burdens. These findings uncover a spatially localized immunosuppressive mechanism associated with Mtb infection and provide potential targets for host-directed therapy.


Assuntos
Granuloma/imunologia , Linfócitos T/imunologia , Fator de Crescimento Transformador beta/metabolismo , Tuberculose/imunologia , Imunidade Adaptativa , Animais , Linfócitos T CD4-Positivos , Morte Celular , Citocinas , Modelos Animais de Doenças , Feminino , Granuloma/microbiologia , Inflamação , Interferon gama , Pulmão/microbiologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis , Células Th1
7.
Cell Host Microbe ; 29(1): 68-82.e5, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33142108

RESUMO

Tuberculosis (TB) is a heterogeneous disease manifesting in a subset of individuals infected with aerosolized Mycobacterium tuberculosis (Mtb). Unlike human TB, murine infection results in uniformly high lung bacterial burdens and poorly organized granulomas. To develop a TB model that more closely resembles human disease, we infected mice with an ultra-low dose (ULD) of between 1-3 founding bacteria, reflecting a physiologic inoculum. ULD-infected mice exhibited highly heterogeneous bacterial burdens, well-circumscribed granulomas that shared features with human granulomas, and prolonged Mtb containment with unilateral pulmonary infection in some mice. We identified blood RNA signatures in mice infected with an ULD or a conventional Mtb dose (50-100 CFU) that correlated with lung bacterial burdens and predicted Mtb infection outcomes across species, including risk of progression to active TB in humans. Overall, these findings highlight the potential of the murine TB model and show that ULD infection recapitulates key features of human TB.


Assuntos
Modelos Animais de Doenças , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar , Animais , Carga Bacteriana , Biomarcadores/sangue , Progressão da Doença , Feminino , Granuloma/patologia , Humanos , Pulmão/microbiologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/crescimento & desenvolvimento , RNA-Seq , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
8.
PLoS Pathog ; 16(12): e1009096, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315936

RESUMO

Bacille Calmette-Guerin (BCG), an attenuated whole cell vaccine based on Mycobacterium bovis, is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), but its efficacy is suboptimal and it fails to protect against pulmonary tuberculosis. We previously reported that Mtb lacking the virulence genes lprG and rv1410c (ΔLprG) was highly attenuated in immune deficient mice. In this study, we show that attenuated ΔLprG Mtb protects C57BL/6J, Balb/cJ, and C3HeB/FeJ mice against Mtb challenge and is as attenuated as BCG in SCID mice. In C3HeB/FeJ mice, ΔLprG vaccination resulted in innate peripheral cytokine production and induced high polyclonal PPD-specific cytokine-secreting CD4+ T lymphocytes in peripheral blood. The ΔLprG vaccine afforded protective efficacy in the lungs of C3H/FeJ mice following both H37Rv and Erdman aerosolized Mtb challenges. Vaccine efficacy correlated with antigen-specific PD-1-negative CD4+ T lymphocytes as well as with serum IL-17 levels after vaccination. We hypothesize that induction of Th17 cells in lung is critical for vaccine protection, and we show a serum cytokine biomarker for IL-17 shortly after vaccination may predict protective efficacy.


Assuntos
Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Fatores de Virulência/genética , Animais , Genes Bacterianos/genética , Interleucina-17/imunologia , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Células Th17/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/prevenção & controle
9.
PLoS Pathog ; 16(7): e1008655, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32673357

RESUMO

Progress in tuberculosis vaccine development is hampered by an incomplete understanding of the immune mechanisms that protect against infection with Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. Although the M72/ASOE1 trial yielded encouraging results (54% efficacy in subjects with prior exposure to Mtb), a highly effective vaccine against adult tuberculosis remains elusive. We show that in a mouse model, establishment of a contained and persistent yet non-pathogenic infection with Mtb ("contained Mtb infection", CMTB) rapidly and durably reduces tuberculosis disease burden after re-exposure through aerosol challenge. Protection is associated with elevated activation of alveolar macrophages, the first cells that respond to inhaled Mtb, and accelerated recruitment of Mtb-specific T cells to the lung parenchyma. Systems approaches, as well as ex vivo functional assays and in vivo infection experiments, demonstrate that CMTB reconfigures tissue resident alveolar macrophages via low grade interferon-γ exposure. These studies demonstrate that under certain circumstances, the continuous interaction of the immune system with Mtb is beneficial to the host by maintaining elevated innate immune responses.


Assuntos
Modelos Animais de Doenças , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Tuberculose/virologia , Animais , Macrófagos Alveolares/imunologia , Camundongos
10.
Cell Rep ; 31(3): 107523, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320656

RESUMO

Recently developed approaches for highly multiplexed imaging have revealed complex patterns of cellular positioning and cell-cell interactions with important roles in both cellular- and tissue-level physiology. However, tools to quantitatively study cellular patterning and tissue architecture are currently lacking. Here, we develop a spatial analysis toolbox, the histo-cytometric multidimensional analysis pipeline (CytoMAP), which incorporates data clustering, positional correlation, dimensionality reduction, and 2D/3D region reconstruction to identify localized cellular networks and reveal features of tissue organization. We apply CytoMAP to study the microanatomy of innate immune subsets in murine lymph nodes (LNs) and reveal mutually exclusive segregation of migratory dendritic cells (DCs), regionalized compartmentalization of SIRPα- dermal DCs, and preferential association of resident DCs with select LN vasculature. The findings provide insights into the organization of myeloid cells in LNs and demonstrate that CytoMAP is a comprehensive analytics toolbox for revealing features of tissue organization in imaging datasets.


Assuntos
Tecido Linfoide/metabolismo , Células Mieloides/metabolismo , Animais , Camundongos , Análise Espacial
11.
J Immunol ; 203(4): 807-812, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308091

RESUMO

Growing evidence suggests the outcome of Mycobacterium tuberculosis infection is established rapidly after exposure, but how the current tuberculosis vaccine, bacillus Calmette-Guérin (BCG), impacts early immunity is poorly understood. In this study, we found that murine BCG immunization promotes a dramatic shift in infected cell types. Although alveolar macrophages are the major infected cell for the first 2 weeks in unimmunized animals, BCG promotes the accelerated recruitment and infection of lung-infiltrating phagocytes. Interestingly, this shift is dependent on CD4 T cells, yet does not require intrinsic recognition of Ag presented by infected alveolar macrophages. M. tuberculosis-specific T cells are first activated in lung regions devoid of infected cells, and these events precede vaccine-induced reduction of the bacterial burden, which occurs only after the colocalization of T cells and infected cells. Understanding how BCG alters early immune responses to M. tuberculosis provides new avenues to improve upon the immunity it confers.


Assuntos
Vacina BCG/imunologia , Linfócitos T CD4-Positivos/imunologia , Macrófagos Alveolares/imunologia , Tuberculose Pulmonar/imunologia , Animais , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose Pulmonar/prevenção & controle
12.
Cell Host Microbe ; 24(3): 439-446.e4, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30146391

RESUMO

Mycobacterium tuberculosis (Mtb) infection is initiated in the distal airways, but the bacteria ultimately disseminate to the lung interstitium. Although various cell types, including alveolar macrophages (AM), neutrophils, and permissive monocytes, are known to be infected with Mtb, the initially infected cells as well as those that mediate dissemination from the alveoli to the lung interstitium are unknown. In this study, using a murine infection model, we reveal that early, productive Mtb infection occurs almost exclusively within airway-resident AM. Thereafter Mtb-infected, but not uninfected, AM localize to the lung interstitium through mechanisms requiring an intact Mtb ESX-1 secretion system. Relocalization of infected AM precedes Mtb uptake by recruited monocyte-derived macrophages and neutrophils. This dissemination process is driven by non-hematopoietic host MyD88/interleukin-1 receptor inflammasome signaling. Thus, interleukin-1-mediated crosstalk between Mtb-infected AM and non-hematopoietic cells promotes pulmonary Mtb infection by enabling infected cells to disseminate from the alveoli to the lung interstitium.


Assuntos
Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Tuberculose/imunologia , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Imunidade Inata/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Interleucina-1/metabolismo
13.
Cell Host Microbe ; 21(6): 695-706.e5, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28618268

RESUMO

CD4 T cells are critical for protective immunity against Mycobacterium tuberculosis (Mtb), the cause of tuberculosis (TB). Yet to date, TB vaccine candidates that boost antigen-specific CD4 T cells have conferred little or no protection. Here we examined CD4 T cell responses to two leading TB vaccine antigens, ESAT-6 and Ag85B, in Mtb-infected mice and in vaccinated humans with and without underlying Mtb infection. In both species, Mtb infection drove ESAT-6-specific T cells to be more differentiated than Ag85B-specific T cells. The ability of each T cell population to control Mtb in the lungs of mice was restricted for opposite reasons: Ag85B-specific T cells were limited by reduced antigen expression during persistent infection, whereas ESAT-6-specific T cells became functionally exhausted due to chronic antigenic stimulation. Our findings suggest that different vaccination strategies will be required to optimize protection mediated by T cells recognizing antigens expressed at distinct stages of Mtb infection.


Assuntos
Antígenos de Diferenciação de Linfócitos T/fisiologia , Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária/imunologia , Tuberculose/imunologia , Aciltransferases/imunologia , Adolescente , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Diferenciação Celular , Citocinas/sangue , Feminino , Humanos , Interferon gama/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , RNA Mensageiro/biossíntese , África do Sul , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/farmacologia , Vacinação
14.
Sci Rep ; 5: 12264, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26191658

RESUMO

Naïve antigen-specific CD8 T cells expand in response to infection and can be phenotypically separated into distinct effector populations, which include memory precursor effector cells (MPECs) and short-lived effector cells (SLECs). In the days before the peak of the T cell response, a third population called early effector cells (EECs) predominate the antigen-specific response. However, the contribution of the EEC population to the CD8 T cell differentiation program during an antimicrobial immune response is not well understood. To test if EEC populations were pre-committed to either an MPEC or SLEC fate, we purified EECs from mice infected with Listeria monocytogenes (LM) or vesicular stomatitis virus (VSV), where the relative frequency of each population is known to be different at the peak of the response. Sorted EECs transferred into uninfected hosts revealed that EECs were pre-programmed to differentiate based on early signals received from the distinct infectious environments. Surprisingly, when these same EECs were transferred early into mismatched infected hosts, the transferred EECs could be diverted from their original fate. These results delineate a model of differentiation where EECs are programmed to form MPECs or SLECs, but remain susceptible to additional inflammatory stimuli that can alter their fate.


Assuntos
Infecções Bacterianas/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Viroses/imunologia , Animais , Antígenos/imunologia , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular , Proliferação de Células , Feminino , Genoma , Inflamação/imunologia , Inflamação/patologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Vesiculovirus/fisiologia
15.
J Immunol ; 195(1): 210-216, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26019270

RESUMO

IFNs, which transduce pivotal signals through Stat1 and Stat2, effectively suppress the replication of Legionella pneumophila in primary murine macrophages. Although the ability of IFN-γ to impede L. pneumophila growth is fully dependent on Stat1, IFN-αß unexpectedly suppresses L. pneumophila growth in both Stat1- and Stat2-deficient macrophages. New studies demonstrating that the robust response to IFN-αß is lost in Stat1-Stat2 double-knockout macrophages suggest that Stat1 and Stat2 are functionally redundant in their ability to direct an innate response toward L. pneumophila. Because the ability of IFN-αß to signal through Stat1-dependent complexes (i.e., Stat1-Stat1 and Stat1-Stat2 dimers) has been well characterized, the current studies focus on how Stat2 is able to direct a potent response to IFN-αß in the absence of Stat1. These studies reveal that IFN-αß is able to drive the formation of a Stat2 and IFN regulatory factor 9 complex that drives the expression of a subset of IFN-stimulated genes, but with substantially delayed kinetics. These observations raise the possibility that this pathway evolved in response to microbes that have devised strategies to subvert Stat1-dependent responses.


Assuntos
Fator Gênico 3 Estimulado por Interferon, Subunidade gama/imunologia , Legionelose/imunologia , Macrófagos/imunologia , Receptor de Interferon alfa e beta/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT2/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/microbiologia , Células da Medula Óssea/patologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Interferon gama/genética , Interferon gama/imunologia , Legionella pneumophila/imunologia , Legionelose/genética , Legionelose/microbiologia , Legionelose/patologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Multimerização Proteica , Receptor de Interferon alfa e beta/genética , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT2/deficiência , Fator de Transcrição STAT2/genética , Transdução de Sinais , Fatores de Tempo
16.
Immunity ; 39(2): 347-56, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23932571

RESUMO

Many studies have examined pathways controlling effector T cell differentiation, but less is known about the fate of individual CD8+ T cells during infection. Here, we examine the antiviral and antibacterial responses of single CD8+ T cells from the polyclonal repertoire. The progeny of naive clonal CD8+ T cells displayed unique profiles of differentiation based on extrinsic pathogen-induced environmental cues, with some clones demonstrating extreme bias toward a single developmental pathway. Moreover, even within the same animal, a single naive CD8+ T cell exhibited distinct fates that were controlled by tissue-specific events. However, memory CD8+ T cells relied on intrinsic factors to control differentiation upon challenge. Our results demonstrate that stochastic and instructive events differentially contribute to shaping the primary and secondary CD8+ T cell response and provide insight into the underlying forces that drive effector differentiation and protective memory formation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Listeriose/imunologia , Estomatite Vesicular/imunologia , Animais , Diferenciação Celular , Feminino , Memória Imunológica , Listeria monocytogenes/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Estomatite Vesicular Indiana/imunologia
17.
J Immunol ; 188(6): 2483-7, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22327071

RESUMO

IL-15 plays a multifaceted role in immune homeostasis, but the unreliability of IL-15 detection has stymied exploration of IL-15 regulation in vivo. To visualize IL-15 expression, we created a transgenic mouse expressing emerald-GFP (EmGFP) under IL-15 promoter control. EmGFP/IL-15 was prevalent in innate cells including dendritic cells (DCs), macrophages, and monocytes. However, DC subsets expressed varying levels of EmGFP/IL-15 with CD8(+) DCs constitutively expressing EmGFP/IL-15 and CD8(-) DCs expressing low EmGFP/IL-15 levels. Virus infection resulted in IL-15 upregulation in both subsets. By crossing the transgenic mice to mice deficient in specific elements of innate signaling, we found a cell-intrinsic dependency of DCs and Ly6C(+) monocytes on IFN-α receptor expression for EmGFP/IL-15 upregulation after vesicular stomatitis virus infection. In contrast, myeloid cells did not require the expression of MyD88 to upregulate EmGFP/IL-15 expression. These findings provide evidence of previously unappreciated regulation of IL-15 expression in myeloid lineages during homeostasis and following infection.


Assuntos
Células Dendríticas/metabolismo , Interleucina-15/biossíntese , Transdução de Sinais/imunologia , Animais , Separação Celular , Células Dendríticas/imunologia , Citometria de Fluxo , Interleucina-15/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Estomatite Vesicular/imunologia
18.
J Immunol ; 184(5): 2638-45, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20124100

RESUMO

Dendritic cells (DCs) must achieve a critical balance between activation and tolerance, a process influenced by cytokines and growth factors. IL-10, which transduces signals through Stat3, has emerged as one important negative regulator of DC activation. To directly examine the role Stat3 plays in regulating DC activity, the Stat3 gene was targeted for deletion with a CD11c-cre transgene. Stat3 CKO mice developed cervical lymphadenopathy as well as a mild ileocolitis that persisted throughout life and was associated with impaired weight gain. Consistent with this, Stat3-deficient DCs demonstrated enhanced immune activity, including increased cytokine production, Ag-dependent T-cell activation and resistance to IL-10-mediated suppression. These results reveal a cell-intrinsic negative regulatory role of Stat3 in DCs and link increased DC activation with perturbed immune homeostasis and chronic mucosal inflammation.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Células Cultivadas , Doença de Crohn/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Citocinas/sangue , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Interferon gama/sangue , Interferon gama/metabolismo , Interleucina-10/farmacologia , Doenças Linfáticas/genética , Doenças Linfáticas/metabolismo , Doenças Linfáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
19.
J Biol Chem ; 284(44): 30058-66, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19720834

RESUMO

Legionella pneumophila remains an important opportunistic pathogen of human macrophages. Its more limited ability to replicate in murine macrophages has been attributed to redundant innate sensor systems that detect and effectively respond to this infection. The current studies evaluate the role of one of these innate response systems, the type I interferon (IFN-I) autocrine loop. The ability of L. pneumophila to induce IFN-I expression was found to be dependent on IRF-3, but not NF-kappaB. Secreted IFN-Is then in turn suppress the intracellular replication of L. pneumophila. Surprisingly, this suppression is mediated by a pathway that is independent of Stat1, Stat2, Stat3, but correlates with the polarization of macrophages toward the M1 or classically activated phenotype.


Assuntos
Imunidade Inata , Interferon Tipo I/imunologia , Interferons/imunologia , Doença dos Legionários/imunologia , Animais , Comunicação Autócrina/imunologia , Células Cultivadas , Legionella pneumophila/fisiologia , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , NF-kappa B , Fatores de Transcrição STAT
20.
Virol J ; 2: 89, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16324217

RESUMO

Alcohol abuse reduces response rates to IFN therapy in patients with chronic hepatitis C. To model the molecular mechanisms behind this phenotype, we characterized the effects of ethanol on Jak-Stat and MAPK pathways in Huh7 human hepatoma cells, in HCV replicon cell lines, and in primary human hepatocytes. High physiological concentrations of acute ethanol activated the Jak-Stat and p38 MAPK pathways and inhibited HCV replication in several independent replicon cell lines. Moreover, acute ethanol induced Stat1 serine phosphorylation, which was partially mediated by the p38 MAPK pathway. In contrast, when combined with exogenously applied IFN-alpha, ethanol inhibited the antiviral actions of IFN against HCV replication, involving inhibition of IFN-induced Stat1 tyrosine phosphorylation. These effects of alcohol occurred independently of i) alcohol metabolism via ADH and CYP2E1, and ii) cytotoxic or cytostatic effects of ethanol. In this model system, ethanol directly perturbs the Jak-Stat pathway, and HCV replication. Infection with Hepatitis C virus is a significant cause of morbidity and mortality throughout the world. With a propensity to progress to chronic infection, approximately 70% of patients with chronic viremia develop histological evidence of chronic liver diseases including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The situation is even more dire for patients who abuse ethanol, where the risk of developing end stage liver disease is significantly higher as compared to HCV patients who do not drink 12.Recombinant interferon alpha (IFN-alpha) therapy produces sustained responses (ie clearance of viremia) in 8-12% of patients with chronic hepatitis C 3. Significant improvements in response rates can be achieved with IFN plus ribavirin combination 456 and pegylated IFN plus ribavirin 78 therapies. However, over 50% of chronically infected patients still do not clear viremia. Moreover, HCV-infected patients who abuse alcohol have extremely low response rates to IFN therapy 9, but the mechanisms involved have not been clarified.MAPKs play essential roles in regulation of differentiation, cell growth, and responses to cytokines, chemokines and stress. The core element in MAPK signaling consists of a module of 3 kinases, named MKKK, MKK, and MAPK, which sequentially phosphorylate each other 10. Currently, four MAPK modules have been characterized in mammalian cells: Extracellular Regulated Kinases (ERK1 and 2), Stress activated/c-Jun N terminal kinase (SAPK/JNK), p38 MAP kinases, and ERK5 11. Interestingly, ethanol modulates MAPKs 12. However, information on how ethanol affects MAPKs in the context of innate antiviral pathways such as the Jak-Stat pathway in human cells is extremely limited. When IFN-alpha binds its receptor, two receptor associated tyrosine kinases, Tyk2 and Jak1 become activated by phosphorylation, and phosphorylate Stat1 and Stat2 on conserved tyrosine residues 13. Stat1 and Stat2 combine with the IRF-9 protein to form the transcription factor interferon stimulated gene factor 3 (ISGF-3), which binds to the interferon stimulated response element (ISRE), and induces transcription of IFN-alpha-induced genes (ISG). The ISGs mediate the antiviral effects of IFN. The transcriptional activities of Stats 1, 3, 4, 5a, and 5b are also regulated by serine phosphorylation 14. Phosphorylation of Stat1 on a conserved serine amino acid at position 727 (S727), results in maximal transcriptional activity of the ISGF-3 transcription factor complex 15. Although cross-talk between p38 MAPK and the Jak-Stat pathway is essential for IFN-induced ISRE transcription, p38 does not participate in IFN induction of Stat1 serine phosphorylation 1416171819. However, cellular stress responses induced by stimuli such as ultraviolet light do induce p38 MAPK mediated Stat1 S727 phosphorylation 18. In the current report, we postulated that alcohol and HCV proteins modulate MAPK and Jak-Stat pathways in human liver cells. To begin to address these issues, we characterized the interaction of acute ethanol on Jak-Stat and MAPK pathways in Huh7 cells, HCV replicon cells lines, and primary human hepatocytes.


Assuntos
Etanol/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/imunologia , Imunidade Inata/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/virologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Hepacivirus/fisiologia , Humanos , Fígado/citologia , Fígado/imunologia , Proteínas Tirosina Quinases/metabolismo , RNA Viral/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA