Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104774, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142218

RESUMO

Mitochondria are signaling organelles implicated in cancer, but the mechanisms are elusive. Here, we show that Parkin, an E3 ubiquitination (Ub) ligase altered in Parkinson's disease, forms a complex with the regulator of cell motility, Kindlin-2 (K2), at mitochondria of tumor cells. In turn, Parkin ubiquitinates Lys581 and Lys582 using Lys48 linkages, resulting in proteasomal degradation of K2 and shortened half-life from ∼5 h to ∼1.5 h. Loss of K2 inhibits focal adhesion turnover and ß1 integrin activation, impairs membrane lamellipodia size and frequency, and inhibits mitochondrial dynamics, altogether suppressing tumor cell-extracellular matrix interactions, migration, and invasion. Conversely, Parkin does not affect tumor cell proliferation, cell cycle transitions, or apoptosis. Expression of a Parkin Ub-resistant K2 Lys581Ala/Lys582Ala double mutant is sufficient to restore membrane lamellipodia dynamics, correct mitochondrial fusion/fission, and preserve single-cell migration and invasion. In a 3D model of mammary gland developmental morphogenesis, impaired K2 Ub drives multiple oncogenic traits of EMT, increased cell proliferation, reduced apoptosis, and disrupted basal-apical polarity. Therefore, deregulated K2 is a potent oncogene, and its Ub by Parkin enables mitochondria-associated metastasis suppression.


Assuntos
Proteínas de Membrana , Ubiquitina-Proteína Ligases , Movimento Celular , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Humanos
2.
Blood Adv ; 7(9): 1739-1753, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36649586

RESUMO

Kindlin-3 (K3) is critical for the activation of integrin adhesion receptors in hematopoietic cells. In humans and mice, K3 deficiency is associated with impaired immunity and bone development, bleeding, and aberrant erythrocyte shape. To delineate how K3 deficiency (K3KO) contributes to anemia and misshaped erythrocytes, mice deficient in erythroid (K3KO∖EpoR-cre) or myeloid cell K3 (K3KO∖Lyz2cre), knockin mice expressing mutant K3 (Q597W598 to AA) with reduced integrin-activation function (K3KI), and control wild-type (WT) K3 mice were studied. Both K3-deficient strains and K3KI mice showed anemia at baseline, reduced response to erythropoietin stimulation, and compromised recovery after phenylhydrazine (PHZ)-induced hemolytic anemia as compared with K3WT. Erythroid K3KO and K3 (Q597W598 to AA) showed arrested erythroid differentiation at proerythroblast stage, whereas macrophage K3KO showed decreased erythroblast numbers at all developmental stages of terminal erythroid differentiation because of reduced erythroblastic island (EBI) formation attributable to decreased expression and activation of erythroblast integrin α4ß1 and macrophage αVß3. Peripheral blood smears of K3KO∖EpoR-cre mice, but not of the other mouse strains, showed numerous aberrant tear drop-shaped erythrocytes. K3 deficiency in these erythrocytes led to disorganized actin cytoskeleton, reduced deformability, and increased osmotic fragility. Mechanistically, K3 directly interacted with F-actin through an actin-binding site K3-LK48. Taken together, these findings document that erythroid and macrophage K3 are critical contributors to erythropoiesis in an integrin-dependent manner, whereas F-actin binding to K3 maintains the membrane cytoskeletal integrity and erythrocyte biconcave shape. The dual function of K3 in erythrocytes and in EBIs establish an important functional role for K3 in normal erythroid function.


Assuntos
Proteínas do Citoesqueleto , Eritropoese , Animais , Humanos , Camundongos , Actinas/metabolismo , Anemia Hemolítica , Proteínas do Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Integrinas/metabolismo
3.
Sci Rep ; 12(1): 18879, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344556

RESUMO

Androgen deprivation therapies aimed to target prostate cancer (PrCa) are only partially successful given the occurrence of neuroendocrine PrCa (NEPrCa), a highly aggressive and highly metastatic form of PrCa, for which there is no effective therapeutic approach. Our group has demonstrated that while absent in prostate adenocarcinoma, the αVß3 integrin expression is increased during PrCa progression toward NEPrCa. Here, we show a novel pathway activated by αVß3 that promotes NE differentiation (NED). This novel pathway requires the expression of a GPI-linked surface molecule, NgR2, also known as Nogo-66 receptor homolog 1. We show here that NgR2 is upregulated by αVß3, to which it associates; we also show that it promotes NED and anchorage-independent growth, as well as a motile phenotype of PrCa cells. Given our observations that high levels of αVß3 and, as shown here, of NgR2 are detected in human and mouse NEPrCa, our findings appear to be highly relevant to this aggressive and metastatic subtype of PrCa. This study is novel because NgR2 role has only minimally been investigated in cancer and has instead predominantly been analyzed in neurons. These data thus pave new avenues toward a comprehensive mechanistic understanding of integrin-directed signaling during PrCa progression toward a NE phenotype.


Assuntos
Carcinoma Neuroendócrino , Receptor Nogo 2 , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Antagonistas de Androgênios , Carcinoma Neuroendócrino/patologia , Linhagem Celular Tumoral , Integrinas , Neoplasias da Próstata/patologia , Receptor Nogo 2/metabolismo
4.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35158908

RESUMO

Breast cancer (BC) is one of the leading causes of cancer-related deaths due in part to its invasive and metastatic properties. Kindlin-2 (FERMT2) is associated with the pathogenesis of several cancers. Although the role of Kindlin-2 in regulating the invasion-metastasis cascade in BC is widely documented, its function in BC initiation and progression remains to be fully elucidated. Accordingly, we generated a floxed mouse strain by targeting the Fermt2 (K2lox/lox) locus, followed by tissue-specific deletion of Kindlin-2 in the myoepithelial compartment of the mammary glands by crossing the K2lox/lox mice with K14-Cre mice. Loss of Kindlin-2 in mammary epithelial cells (MECs) showed no deleterious effects on mammary gland development, fertility, and lactation in mice bearing Kindlin-2-deletion. However, in a syngeneic mouse model of BC, mammary gland, specific knockout of Kindlin-2 inhibited the growth and metastasis of murine E0771 BC cells inoculated into the mammary fat pads. However, injecting the E0771 cells into the lateral tail vein of Kindlin-2-deleted mice had no effect on tumor colonization in the lungs, thereby establishing a critical role of MEC Kindlin-2 in supporting BC tumor growth and metastasis. Mechanistically, we found the MEC Kindlin-2-mediated inhibition of tumor growth and metastasis is accomplished through its regulation of the TGF-ß/ERK MAP kinase signaling axis. Thus, Kindlin-2 within the mammary gland microenvironment facilitates the progression and metastasis of BC.

5.
J Thromb Haemost ; 19(4): 941-953, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33492784

RESUMO

OBJECTIVE: Plasminogen/plasmin is a serine protease system primarily responsible for degrading fibrin within blood clots. Plasminogen mediates its functions by interacting with plasminogen receptors on the cell surface. H2B, one such plasminogen receptor, is found on the surface of several cell types including macrophages. Both basic and clinical studies support the role of plasminogen in the process of foam cell formation (FCF), a hallmark of atherosclerosis. Growing evidence also implicates serine protease-activated receptors (PARs) in atherosclerosis. These receptors are also found on macrophages, and plasmin is capable of activating PAR1 and PAR4. The goal of this study was to determine the extent of H2B's contribution to plasminogen-mediated FCF by macrophages and if PARs are involved in this process. APPROACH AND RESULTS: Treating macrophages with plasminogen increases their oxidized low-density lipoprotein uptake and plasminogen-mediated foam cell formation (Plg-FCF) significantly. The magnitude of Plg-FCF correlates with cell-surface expression of the H2B level. H2B blockade or downregulation reduces Plg-FCF, whereas its overexpression or high endogenous levels increases Plg-FCF. Modulating PAR1 level in mouse macrophages affects Plg-FCF. Activation/overexpression of PAR1 increases and its blockade/knockdown reduces this response. Confocal imaging indicates that both H2B and PAR1 colocalize with clathrin coated pits on the surface of macrophages, and reducing expression of clathrin or interfering with the clathrin-coated pits integrity reduces Plg-FCF. CONCLUSION: Our data indicate that the magnitude of Plg-FCF by macrophages is proportional to the H2B levels and demonstrate for the first time that PAR1 is involved in this process and that the integrity of clathrin-coated pits is required for the full effect of Plg-induced FCF.


Assuntos
Células Espumosas , Plasminogênio , Animais , Clatrina/metabolismo , Fibrinolisina/metabolismo , Células Espumosas/metabolismo , Histonas , Macrófagos/metabolismo , Camundongos , Plasminogênio/metabolismo , Receptor PAR-1
6.
J Breast Cancer Res ; 1(2): 20-29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35936112

RESUMO

Kindlin-1 (K1, FERMT1), Kindlin-2 (K2, FERMT2), and Kindlin-3 (K3, FERMT3) are the three members of the kindlin family of adapter proteins found in mammals. One or more kindlins are found in most cell types, K1 primarily in epithelial cells, K3 in primarily hematopoietic cells and also endothelial cells, and K2 is very broadly distributed. The kindlins consist primarily of a 4.1-erzin-radixin-moiesin (FERM) domain, which is transected by a lipid-binding plextrin-homology (PH) domain. Deficiencies of each kindlin in mice and/ or humans have profound pathogenic consequences. The most well-established function of kindlins depends on their ability to participate in the activat integrin adhesion receptors. This function depends on the binding of each kindlin to the beta subunit of integrins where it cooperates with talin to enhance avidity of interactions with cognate extracellular matrix ligands. Deficiencies of many different integrins are lethal, are critical for normal development of mammary tissue, and excessive expression and/or activation of certain integrins are associated with progression and metastasis of breast cancer. However, via its interaction with many other intracellular proteins, kindlins can influence numerous cellular responses. Changes in expression of each of the three kindlins have been reported in association with breast cancer, with several studies indicating that kindlins are among the most upregulated genes in breast cancer. The association of abnormal functions of K2 with breast cancer is particularly extensive with many reports indicating that it is a major driver of breast cancer via its promotion of cancer cell proliferation, survival, adhesion, migration, invasion, the epithelial-to-mesenchymal transition and its influence on macrophage recruitment and phenotype. These associations suggest that the kindlins and their functions represent an intriguing therapeutic target for exploration of breast cancer therapy.

7.
FASEB J ; 34(9): 11529-11545, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686880

RESUMO

Thrombospondin-4 (TSP4) is a pro-angiogenic protein that has been implicated in tissue remodeling and local vascular inflammation. TSP4 and, in particular, its SNP variant, P387 TSP4, have been associated with cardiovascular disease. Macrophages are central to initiation and resolution of inflammation and development of atherosclerotic lesions, but the effects of the P387 TSP4 on macrophages remain essentially unknown. We examined the effects of the P387 TSP4 variant on macrophages in cell culture and in vivo in a murine model of atherosclerosis. Furthermore, the levels and distributions of the two TSP4 variants were assessed in human atherosclerotic arteries. In ApoE-/- /P387-TSP4 knock-in mice, lesions size measured by Oil Red O did not change, but the lesions accumulated more macrophages than lesions bearing A387 TSP4. The levels of inflammatory markers were increased in lesions of ApoE-/- /P387-TSP4 knock-in mice compared to ApoE-/- mice. Lesions in human arteries from individuals carrying the P387 variant had higher levels of TSP4 and higher macrophage accumulation. P387 TSP4 was more active in supporting adhesion of cultured human and mouse macrophages in experiments using recombinant TSP4 variants and in cells derived from P387-TSP4 knock-in mice. TSP4 supports the adhesion of macrophages and their accumulation in atherosclerotic lesions without changing the size of lesions. P387 TSP4 is more active in supporting these pro-inflammatory events in the vascular wall, which may contribute to the increased association of P387 TSP4 with cardiovascular disease.


Assuntos
Aterosclerose/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Trombospondinas/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Linhagem Celular , Células Cultivadas , Citocinas/sangue , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Placa Aterosclerótica/genética , Polimorfismo de Nucleotídeo Único , Trombospondinas/genética
8.
Cell Death Dis ; 10(8): 539, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308359

RESUMO

In cancer, cellular senescence is a complex process that leads to inhibition of proliferation of cells that may develop a neoplastic phenotype. A plethora of signaling pathways, when dysregulated, have been shown to elicit a senescence response. Two well-known tumor suppressor pathways, controlled by the p53 and retinoblastoma proteins, have been implicated in maintaining the cellular senescence phenotype. Kindlin-2, a member of an actin cytoskeleton organizing and integrin activator proteins, has been shown to play a key role in the regulation of several hallmarks of several cancers, including breast cancer (BC). The molecular mechanisms whereby Kindlin-2 regulates cellular senescence in BC tumors remains largely unknown. Here we show that Kindlin-2 regulates cellular senescence in part through its interaction with p53, whereby it regulates the expression of the p53-responsive genes; i.e., SerpinB2 and p21, during the induction of senescence. Our data show that knockout of Kindlin-2 via CRISPR/Cas9 in several BC cell lines significantly increases expression levels of both SerpinB2 and p21 resulting in the activation of hallmarks of cellular senescence. Mechanistically, interaction between Kindlin-2 and p53 at the promotor level is critical for the regulated expression of SerpinB2 and p21. These findings identify a previously unknown Kindlin-2/p53/SerpinB2 signaling axis that regulates cellular senescence and intervention in this axis may serve as a new therapeutic window for BCs treatment.


Assuntos
Neoplasias da Mama/metabolismo , Senescência Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Proteínas de Neoplasias/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas do Citoesqueleto/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Musculares/genética , Proteínas de Neoplasias/genética , Transdução de Sinais/genética
9.
J Cell Sci ; 132(6)2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30765465

RESUMO

Purified vascular endothelial cell (EC) growth factor receptor-2 (VEGFR2) auto-phosphorylates upon VEGF-A occupation in vitro, arguing that VEGR2 confers its mitotic and viability signaling in and of itself. Herein, we show that, in ECs, VEGFR2 function requires concurrent C3a/C5a receptor (C3ar1/C5ar1) and IL-6 receptor (IL-6R)-gp130 co-signaling. C3ar1/C5ar1 or IL-6R blockade totally abolished VEGFR2 auto-phosphorylation, downstream Src, ERK, AKT, mTOR and STAT3 activation, and EC cell cycle entry. VEGF-A augmented production of C3a/C5a/IL-6 and their receptors via a two-step p-Tyk2/p-STAT3 process. Co-immunoprecipitation analyses, confocal microscopy, ligand pulldown and bioluminescence resonance energy transfer assays all indicated that the four receptors are physically interactive. Angiogenesis in murine day 5 retinas and in adult tissues was accelerated when C3ar1/C5ar1 signaling was potentiated, but repressed when it was disabled. Thus, C3ar1/C5ar1 and IL-6R-gp130 joint activation is needed to enable physiological VEGFR2 function.


Assuntos
Receptor gp130 de Citocina/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Complemento/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Células Endoteliais/metabolismo , Interleucina-6/metabolismo , Camundongos , Neovascularização Fisiológica , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Life Sci Alliance ; 3(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-32024667

RESUMO

Studies of isolated cells, mice, and humans have demonstrated the vital role of the FERM domain protein kindlin-3 in integrin activation in certain hematopoietic and non-hematopoietic cells, consequent to binding to integrin ß-subunits. To explore regulatory mechanisms, we developed a monoclonal antibody that selectively recognizes the phosphorylated form of Ser484 (pS484) in kindlin-3. Activation of platelets, HEL megakaryocytic-like cells and BT549 breast cancer cells led to enhanced expression of pS484 as assessed by immunofluorescence or Western blotting. In platelets, pS484 rose rapidly and transiently upon stimulation. When a mutant form of kindlin-3, T482S484/AA kindlin-3, was transduced into mouse megakaryocytes, it failed to support activation of integrin αIIbß3, whereas wild-type kindlin-3 did. In MDA-MB231 breast cancer cells, expression of T482S484/AA kindlin-3 suppressed cell spreading, migration, invasion, and VEGF production. Wild-type kindlin-3 expressing cells markedly increased tumor growth in vivo, whereas T482S484/AA kindlin-3 significantly blunted tumor progression. Thus, our data establish that a unique phosphorylation event in kindlin-3 regulates its cellular functions.


Assuntos
Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Plaquetas/citologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetulus , Proteínas do Citoesqueleto/imunologia , Proteínas do Citoesqueleto/metabolismo , Feminino , Humanos , Cadeias beta de Integrinas/metabolismo , Leucemia Eritroblástica Aguda/imunologia , Camundongos , Camundongos Nus , Fosforilação , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo
11.
Sci Rep ; 8(1): 7360, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743493

RESUMO

Metastasis is the main cause of death in cancer patients, including breast cancer (BC). Despite recent progress in understanding the biological and molecular determinants of BC metastasis, effective therapeutic treatments are yet to be developed. Among the multitude of molecular mechanisms that regulate cancer metastasis, the epithelial-to-mesenchymal transition (EMT) program plays a key role in the activation of the biological steps leading to the metastatic phenotype. Kindlin-2 has been associated with the pathogenesis of several types of cancers, including BC. The role of Kindlin-2 in the regulation of BC metastasis, and to a lesser extent in EMT is not well understood. In this study, we show that Kindlin-2 is closely associated with the development of the metastatic phenotype in BC. We report that knockout of Kindlin-2 in either human or mouse BC cells, significantly inhibits metastasis in both human and mouse models of BC metastasis. We also report that the Kindlin-2-mediated inhibition of metastasis is the result of inhibition of expression of key molecular markers of the EMT program. Mechanistically, we show that miR-200b, a master regulator of EMT, directly targets and inhibits the expression of Kindlin-2, leading to the subsequent inhibition of EMT and metastasis. Together, our data support the targeting of Kindlin-2 as a therapeutic strategy against BC metastasis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas do Citoesqueleto/genética , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Proteínas Musculares/genética , Animais , Adesão Celular , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo/genética , Matriz Extracelular/metabolismo , Feminino , Adesões Focais/metabolismo , Camundongos , Metástase Neoplásica , Podossomos/patologia
12.
J Immunol ; 200(7): 2426-2438, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29459405

RESUMO

Atherosclerosis is a complex inflammatory process characterized by monocyte recruitment into the arterial wall, their differentiation into macrophages, and lipid accumulation. Because integrin αMß2 (CD11b/CD18) mediates multiple diverse functions of leukocytes, we examined its role in atherogenesis. αM-/-/ApoE-/- and ApoE-/- mice were fed a control or high fat diet for 3 or 16 wk to induce atherogenesis. Unexpectedly, αM deficiency accelerated development of atherosclerosis in female but not in male mice. The size of aortic root lesions was 3-4.5-fold larger in female αM-/-/ApoE-/- than in ApoE-/- mice. Monocyte and macrophage content within the lesions was increased 2.5-fold in female αM-/-/ApoE-/- mice due to enhanced proliferation. αMß2 elimination promoted gender-dependent foam cell formation due to enhanced uptake of cholesterol by αM-/-/ApoE-/- macrophages. This difference was attributed to enhanced expression of lipid uptake receptors, CD36 and scavenger receptor A1 (SR-A1), in female mice. Macrophages from female αM-/-/ApoE-/- mice showed dramatically reduced expression of FoxM1 transcription factor and estrogen receptors (ER) α and ß. As their antagonists inhibited the effect of 17ß-estradiol (E2), E2 decreased CD36, SR-A1, and foam cell formation in ApoE-/- macrophages in an ERα- and ERß-dependent manner. However, female αM-/-/ApoE-/- macrophages failed to respond to E2 and maintained elevated CD36, SR-A1, and lipid accumulation. FoxM1 inhibition in ApoE-/- macrophages reduced ERs and enhanced CD36 and SR-A1 expression, whereas FoxM1 overexpression in αM-/-/ApoE-/- macrophages reversed their proatherogenic phenotype. We demonstrate a new, surprising atheroprotective role of αMß2 in female ApoE-/- mice. αMß2 maintains ER expression in macrophages and E2-dependent inhibition of foam cell formation.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/patologia , Estradiol/metabolismo , Receptor alfa de Estrogênio/biossíntese , Receptor beta de Estrogênio/biossíntese , Antígeno de Macrófago 1/imunologia , Macrófagos/imunologia , Animais , Aterosclerose/imunologia , Antígenos CD36 , Colesterol/metabolismo , Feminino , Células Espumosas/citologia , Proteína Forkhead Box M1/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Depuradores Classe A/imunologia
13.
J Physiol ; 595(20): 6443-6462, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28799653

RESUMO

KEY POINTS: A reduction in Kindlin-2 levels in endothelial cells compromises vascular barrier function. Kindlin-2 is a previously unrecognized component of endothelial adherens junctions. By interacting directly and simultaneously with ß- or γ-catenin and cortical actin filaments, Kindlin-2 stabilizes adherens junctions. The Kindlin-2 binding sites for ß- and γ-catenin reside within its F1 and F3 subdomains. Although Kindlin-2 does not associate directly with tight junctions, its downregulation also destabilizes these junctions. Thus, impairment of both adherens and tight junctions may contribute to enhanced leakiness of vasculature in Kindlin-2+/- mice. ABSTRACT: Endothelial cells (EC) establish a physical barrier between the blood and surrounding tissue. Impairment of this barrier can occur during inflammation, ischaemia or sepsis and cause severe organ dysfunction. Kindlin-2, which is primarily recognized as a focal adhesion protein in EC, was not anticipated to have a role in vascular barrier. We tested the role of Kindlin-2 in regulating vascular integrity using several different approaches to decrease Kindlin-2 levels in EC. Reduced levels of Kindlin-2 in Kindlin-2+/- mice aortic endothelial cells (MAECs) from these mice, and human umbilical ECs (HUVEC) treated with Kindlin-2 siRNA showed enhanced basal and platelet-activating factor (PAF) or lipopolysaccharide-stimulated vascular leakage compared to wild-type (WT) counterparts. PAF preferentially disrupted the Kindlin-2+/- MAECs barrier to BSA and dextran and reduced transendothelial resistance compared to WT cells. Kindlin-2 co-localized and co-immunoprecipitated with vascular endothelial cadherin-based complexes, including ß- and γ-catenin and actin, components of adherens junctions (AJ). Direct interaction of Kindlin-2 with ß- and γ-catenin and actin was demonstrated in co-immunoprecipitation and surface plasmon resonance experiments. In thrombin-stimulated HUVECs, Kindlin-2 and cortical actin dissociated from stable AJs and redistributed to radial actin stress fibres of remodelling focal AJs. The ß- and γ-catenin binding site resides within the F1 and F3 subdomains of Kindlin-2 but not the integrin binding site in F3. These results establish a previously unrecognized and vital role of Kindlin-2 with respect to maintaining the vascular barrier by linking Vascuar endothelial cadherin-based complexes to cortical actin and thereby stabilizing AJ.


Assuntos
Junções Aderentes/fisiologia , Proteínas do Citoesqueleto/fisiologia , Células Endoteliais/fisiologia , Proteínas Musculares/fisiologia , Animais , Aorta/citologia , Sítios de Ligação , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Feminino , Células HEK293 , Humanos , Pulmão/irrigação sanguínea , Pulmão/fisiologia , Masculino , Camundongos Transgênicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Domínios Proteicos , Pele/irrigação sanguínea , Fenômenos Fisiológicos da Pele , Traqueia/irrigação sanguínea , Traqueia/fisiologia , Veias Umbilicais/citologia , beta Catenina/metabolismo
14.
Cancer Res ; 77(18): 5129-5141, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687620

RESUMO

Interplay between tumor cells and host cells in the tumor microenvironment dictates the development of all cancers. In breast cancer, malignant cells educate host macrophages to adopt a protumorigenic phenotype. In this study, we show how the integrin-regulatory protein kindlin-2 (FERMT2) promotes metastatic progression of breast cancer through the recruitment and subversion of host macrophages. Kindlin-2 expression was elevated in breast cancer biopsy tissues where its levels correlated with reduced patient survival. On the basis of these observations, we used CRISPR/Cas9 technology to ablate Kindlin-2 expression in human MDA-MB-231 and murine 4T1 breast cancer cells. Kindlin-2 deficiency inhibited invasive and migratory properties in vitro without affecting proliferation rates. However, in vivo tumor outgrowth was inhibited by >80% in a manner associated with reduced macrophage infiltration and secretion of the macrophage attractant and growth factor colony-stimulating factor-1 (CSF-1). The observed loss of CSF-1 appeared to be caused by a more proximal deficiency in TGFß-dependent signaling in Kindlin-2-deficient cells. Collectively, our results illuminate a Kindlin-2/TGFß/CSF-1 signaling axis employed by breast cancer cells to capture host macrophage functions that drive tumor progression. Cancer Res; 77(18); 5129-41. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos Peritoneais/patologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Apoptose , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
JCI Insight ; 2(11)2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28570266

RESUMO

Microglia play a critical role in the development and homeostasis of the CNS. While mobilization of microglia is critical for a number of pathologies, understanding of the mechanisms of their migration in vivo is limited and often based on similarities to macrophages. Kindlin3 deficiency as well as Kindlin3 mutations of integrin-binding sites abolish both integrin inside-out and outside-in signaling in microglia, thereby resulting in severe deficiencies in cell adhesion, polarization, and migration in vitro, which are similar to the defects observed in macrophages. In contrast, while Kindlin3 mutations impaired macrophage mobilization in vivo, they had no effect either on the population of microglia in the CNS during development or on mobilization of microglia and subsequent microgliosis in a model of multiple sclerosis. At the same time, acute microglial response to laser-induced injury was impaired by the lack of Kindlin3-integrin interactions. Based on 2-photon imaging of microglia in the brain, Kindlin3 is required for elongation of microglial processes toward the injury site and formation of phagosomes in response to brain injury. Thus, while Kindlin3 deficiency in human subjects is not expected to diminish the presence of microglia within CNS, it might delay the recovery process after injury, thereby exacerbating its complications.

16.
J Immunol ; 198(12): 4855-4867, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500072

RESUMO

Macrophage accumulation is a critical step during development of chronic inflammation, initiating progression of many devastating diseases. Leukocyte-specific integrin αDß2 (CD11d/CD18) is dramatically upregulated on macrophages at inflammatory sites. Previously we found that CD11d overexpression on cell surfaces inhibits in vitro cell migration due to excessive adhesion. In this study, we have investigated how inflammation-mediated CD11d upregulation contributes to macrophage retention at inflammatory sites during atherogenesis. Atherosclerosis was evaluated in CD11d-/-/ApoE-/- mice after 16 wk on a Western diet. CD11d deficiency led to a marked reduction in lipid deposition in aortas and isolated macrophages. Macrophage numbers in aortic sinuses of CD11d-/- mice were reduced without affecting their apoptosis and proliferation. Adoptive transfer of fluorescently labeled wild-type and CD11d-/- monocytes into ApoE-/- mice demonstrated similar recruitment from circulation, but reduced accumulation of CD11d-/- macrophages within the aortas. Furthermore, CD11d expression was significantly upregulated on macrophages in atherosclerotic lesions and M1 macrophages in vitro. Interestingly, expression of the related ligand-sharing integrin CD11b was not altered. This difference defines their distinct roles in the regulation of macrophage migration. CD11d-deficient M1 macrophages demonstrated improved migration in a three-dimensional fibrin matrix and during resolution of peritoneal inflammation, whereas migration of CD11b-/- M1 macrophages was not affected. These results prove the contribution of high densities of CD11d to macrophage arrest during atherogenesis. Because high expression of CD11d was detected in several inflammation-dependent diseases, we suggest that CD11d/CD18 upregulation on proinflammatory macrophages may represent a common mechanism for macrophage retention at inflammatory sites, thereby promoting chronic inflammation and disease development.


Assuntos
Aterosclerose/imunologia , Vasos Sanguíneos/patologia , Antígenos CD11/genética , Antígenos CD18/genética , Cadeias alfa de Integrinas/genética , Macrófagos/imunologia , Animais , Aorta/imunologia , Aorta/patologia , Apolipoproteínas E/deficiência , Aterosclerose/etiologia , Aterosclerose/patologia , Vasos Sanguíneos/imunologia , Antígenos CD11/imunologia , Antígenos CD18/imunologia , Dieta Ocidental , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Cadeias alfa de Integrinas/deficiência , Cadeias alfa de Integrinas/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Peritonite/imunologia , Peritonite/patologia , Ativação Transcricional , Regulação para Cima
17.
Infect Immun ; 85(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27799334

RESUMO

Integrins αMß2 and αXß2 are homologous adhesive receptors that are expressed on many of the same leukocyte populations and bind many of the same ligands. Although αMß2 was extensively characterized and implicated in leukocyte inflammatory and immune functions, the roles of αXß2 remain largely obscure. Here, we tested the ability of mice deficient in integrin αMß2 or αXß2 to deal with opportunistic infections and the capacity of cells derived from these animals to execute inflammatory functions. The absence of αMß2 affected the recruitment of polymorphonuclear neutrophils (PMN) to bacterial and fungal pathogens as well as to model inflammatory stimuli, and αMß2-deficient PMN displayed defective inflammatory functions. In contrast, deficiency of αXß2 abrogated intraperitoneal recruitment and adhesive functions of monocytes and macrophages (Mϕ) and the ability of these cells to kill/phagocytose Candida albicans or Escherichia coli cells both ex vivo and in vivo During systemic candidiasis, the absence of αXß2 resulted in the loss of antifungal activity by tissue Mϕ and inhibited the production of tumor necrosis factor alpha (TNF-α)/interleukin-6 (IL-6) in infected kidneys. Deficiency of αMß2 suppressed Mϕ egress from the peritoneal cavity, decreased the production of anti-inflammatory IL-10, and stimulated the secretion of IL-6. The absence of αXß2, but not of αMß2, increased survival against a septic challenge with lipopolysaccharide (LPS) by 2-fold. Together, these results suggest that αMß2 plays a primary role in PMN inflammatory functions and regulates the anti-inflammatory functions of Mϕ, whereas αXß2 is central in the regulation of inflammatory functions of recruited and tissue-resident Mϕ.


Assuntos
Anti-Infecciosos/metabolismo , Inflamação/metabolismo , Integrina alfaXbeta2/metabolismo , Leucócitos/metabolismo , Antígeno de Macrófago 1/metabolismo , Animais , Candida albicans/metabolismo , Candidíase/metabolismo , Candidíase/microbiologia , Adesão Celular/fisiologia , Escherichia coli/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Inflamação/microbiologia , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Leucócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Fagocitose/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
18.
J Cell Biol ; 213(1): 97-108, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27044892

RESUMO

Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2(+/-)mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK(47)/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK(47)/AA mutation were equivalent in their ability to coactivate integrin αIIbß3 in a CHO cell system when coexpressed with talin. However, K2-LK(47)/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses.


Assuntos
Actinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Células CHO , Adesão Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Cricetulus , Proteínas do Citoesqueleto/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Talina/metabolismo
19.
J Immunol ; 193(9): 4712-21, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25261488

RESUMO

Polymorphonuclear neutrophils (PMNs) and macrophages are crucial contributors to neovascularization, serving as a source of chemokines, growth factors, and proteases. α(M)ß(2)(CD11b/CD18) and α(L)ß(2)(CD11a/CD18) are expressed prominently and have been implicated in various responses of these cell types. Thus, we investigated the role of these ß2 integrins in angiogenesis. Angiogenesis was analyzed in wild-type (WT), α(M)-knockout (α(M)(-/-)), and α(L)-deficient (α(L)(-/-)) mice using B16F10 melanoma, RM1 prostate cancer, and Matrigel implants. In all models, vascular area was decreased by 50-70% in α(M)(-/-) mice, resulting in stunted tumor growth as compared with WT mice. In contrast, α(L) deficiency did not impair angiogenesis and tumor growth. The neovessels in α(M)(-/-) mice were leaky and immature because they lacked smooth muscle cell and pericytes. Defective angiogenesis in the α(M)(-/-) mice was associated with attenuated PMN and macrophage recruitment into tumors. In contrast to WT or the α(L)(-/-) leukocytes, the α(M)(-/-) myeloid cells showed impaired plasmin (Plm)-dependent extracellular matrix invasion, resulting from 50-75% decrease in plasminogen (Plg) binding and pericellular Plm activity. Surface plasmon resonance verified direct interaction of the α(M)I-domain, the major ligand binding site in the ß(2) integrins, with Plg. However, the α(L)I-domain failed to bind Plg. In addition, endothelial cells failed to form tubes in the presence of conditioned medium collected from TNF-α-stimulated PMNs derived from the α(M)(-/-) mice because of severely impaired degranulation and secretion of VEGF. Thus, α(M)ß(2) plays a dual role in angiogenesis, supporting not only Plm-dependent recruitment of myeloid cells to angiogenic niches, but also secretion of VEGF by these cells.


Assuntos
Leucócitos/imunologia , Leucócitos/metabolismo , Antígeno de Macrófago 1/genética , Neovascularização Patológica/genética , Animais , Transplante de Medula Óssea , Quimiotaxia/genética , Quimiotaxia/imunologia , Modelos Animais de Doenças , Antígeno de Macrófago 1/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Plasminogênio/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
20.
Arterioscler Thromb Vasc Biol ; 34(9): 1961-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969775

RESUMO

OBJECTIVE: Kindlin-3 is a critical supporter of integrin function in platelets. Lack of expression of kindlin-3 protein in patients impairs integrin αIIbß3-mediated platelet aggregation. Although kindlin-3 has been categorized as an integrin-binding partner, the functional significance of the direct interaction of kindlin-3 with integrin αIIbß3 in platelets has not been established. Here, we evaluated the significance of the binding of kindlin-3 to integrin αIIbß3 in platelets in supporting integrin αIIbß3-mediated platelet functions. APPROACH AND RESULTS: We generated a strain of kindlin-3 knockin (K3KI) mice that express a kindlin-3 mutant that carries an integrin-interaction defective substitution. K3KI mice could survive normally and express integrin αIIbß3 on platelets similar to their wild-type counterparts. Functional analysis revealed that K3KI mice exhibited defective platelet function, including impaired integrin αIIbß3 activation, suppressed platelet spreading and platelet aggregation, prolonged tail bleeding time, and absence of platelet-mediated clot retraction. In addition, whole blood drawn from K3KI mice showed resistance to in vitro thrombus formation and, as a consequence, K3KI mice were protected from in vivo arterial thrombosis. CONCLUSIONS: These observations demonstrate that the direct binding of kindlin-3 to integrin αIIbß3 is involved in supporting integrin αIIbß3 activation and integrin αIIbß3-dependent responses of platelets and consequently contributes significantly to arterial thrombus formation.


Assuntos
Plaquetas/fisiologia , Trombose das Artérias Carótidas/fisiopatologia , Proteínas do Citoesqueleto/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/fisiologia , Substituição de Aminoácidos , Animais , Tempo de Sangramento , Plaquetas/ultraestrutura , Trombose das Artérias Carótidas/sangue , Trombose das Artérias Carótidas/induzido quimicamente , Forma Celular , Cloretos/toxicidade , Retração do Coágulo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Feminino , Compostos Férricos/toxicidade , Técnicas de Introdução de Genes , Genes Reporter , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Ativação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA