Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373172

RESUMO

Non-coding RNAs constitute a heterogeneous group of molecules that lack the ability to encode proteins but retain the potential ability to influence cellular processes through a regulatory mechanism. Of these proteins, microRNAs, long non-coding RNAs, and more recently, circular RNAs have been the most extensively described. However, it is not entirely clear how these molecules interact with each other. For circular RNAs, the basics of their biogenesis and properties are also lacking. Therefore, in this study we performed a comprehensive analysis of circular RNAs in relation to endothelial cells. We identified the pool of circular RNAs present in the endothelium and showed their spectrum and expression across the genome. Using different computational strategies, we proposed approaches to search for potentially functional molecules. In addition, using data from an in vitro model that mimics conditions in the endothelium of an aortic aneurysm, we demonstrated altered expression levels of circRNAs mediated by microRNAs.


Assuntos
MicroRNAs , RNA Longo não Codificante , RNA Circular/genética , Células Endoteliais , MicroRNAs/genética , RNA Longo não Codificante/genética
2.
Int Immunopharmacol ; 119: 110264, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37159965

RESUMO

Asthma is a heterogeneous, chronic respiratory disease characterized by airway inflammation and remodeling. Phosphodiesterase (PDE) inhibitors represent one of the intensively studied groups of potential anti-asthmatic agents due to their affecting both airway inflammation and remodeling. However, the effect of inhaled pan-PDE inhibitors on allergen induced asthma has not been reported to date. In this study we investigated the impact of two, representative strong pan-PDE inhibitors from the group of 7,8-disubstituted derivatives of 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione: compound 38 and 145, on airway inflammation and remodeling in murine model of ovalbumin (OVA)-challenged allergic asthma. Female Balb/c mice were sensitized and challenged with OVA, 38 and 145 were administrated by inhalation, before each OVA challenge. The inhaled pan-PDE inhibitors markedly reduced the OVA-induced airway inflammatory cell infiltration, eosinophil recruitment, Th2 cytokine level in bronchoalveolar lavage fluid, as well as both, total and OVA-specific IgE levels in plasma. In addition, inhaled 38 and 145 decreased many typical features of airway remodeling, including goblet cell metaplasia, mucus hypersecretion, collagen overproduction and deposition, as well as Tgfb1, VEGF, and α-SMA expression in airways of allergen challenged mice. We also demonstrated that both 38 and 145 alleviate airway inflammation and remodelling by inhibition of the TGF-ß/Smad signaling pathway activated in OVA-challenged mice. Taken together, these results suggest that the investigated pan-PDE inhibitors administered by inhalation are dual acting agents targeting both airway inflammation and remodeling in OVA-challenged allergic asthma and may represent promising, anti-asthmatic drug candidates.


Assuntos
Antiasmáticos , Asma , Feminino , Camundongos , Animais , Ovalbumina , Modelos Animais de Doenças , Inibidores de Fosfodiesterase/efeitos adversos , Inibidores de Fosfodiesterase/metabolismo , Asma/induzido quimicamente , Asma/tratamento farmacológico , Inflamação/metabolismo , Líquido da Lavagem Broncoalveolar , Antiasmáticos/uso terapêutico , Camundongos Endogâmicos BALB C , Remodelação das Vias Aéreas , Pulmão/metabolismo
3.
J Allergy Clin Immunol ; 151(4): 953-965, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36395984

RESUMO

BACKGROUND: Nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease (N-ERD) is currently classified as a type-2 (T2) immune-mediated disease characterized by asthma, chronic rhinosinusitis, and hypersensitivity to cyclooxygenase-1 inhibitors. OBJECTIVES: The aim of this study was to characterize immunological endotypes of N-ERD based on the gene expression profile in the bronchial epithelium. METHODS: mRNA transcriptome (mRNA-sequencing) was analyzed in bronchial brushings from patients with N-ERD (n = 22), those with nonsteroidal anti-inflammatory drug-tolerant asthma (NTA, n = 21), and control subjects (n = 11). Additionally, lipid and protein mediators were measured in bronchoalveolar lavage fluid (BALF). RESULTS: Initial analysis of the entire asthma group revealed 2 distinct gene expression signatures: "T2-high" with increased expression of T2-related genes (eg, CLCA1, CST1), and "proinflammatory" characterized by the expression of innate immunity (eg, FOSB, EGR3) and IL-17A response genes. These endotypes showed similar prevalence in N-ERD and NTA (eg, T2-high: 33% and 32%, respectively). T2-high asthma was characterized by increased expression of mast cell and eosinophil markers, goblet cell hyperplasia, and elevated LTE4 and PGD2 in BALF. Patients with a proinflammatory endotype showed mainly neutrophilic inflammation and increased innate immunity mediators in BALF. Furthermore, the proinflammatory signature was associated with a more severe course of asthma and marked airway obstruction. These signatures could be recreated in vitro by exposure of bronchial epithelial cells to IL-13 (T2-high) and IL-17A (proinflammatory). CONCLUSIONS: T2-high signature was found only in one-third of patients with N-ERD, which was similar to what was found in patients with NTA. The proinflammatory endotype, which also occurred in N-ERD, suggests a novel mechanism of severe disease developing on a non-T2 background.


Assuntos
Asma , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Transcriptoma , Interleucina-17/genética , Anti-Inflamatórios não Esteroides/efeitos adversos , Asma/genética , Células Epiteliais
4.
ACS Omega ; 7(43): 39234-39249, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340063

RESUMO

Surface properties are crucial for medical device and implant research and applications. We present novel polycatecholamine coatings obtained by oxidative polymerization of l-tyrosine, l-phenylalanine, and 2-phenylethylamine based on mussel glue-inspired chemistry. We optimized the reaction parameters and examined the properties of coatings compared to the ones obtained from polydopamine. We produced polycatecholamine coatings on various materials used to manufacture implantable medical devices, such as polyurethane, but also hard-to-coat polydimethylsiloxane, polytetrafluoroethylene, and stainless steel. The coating process results in significant hydrophilization of the material's surface, reducing the water contact angle by about 50 to 80% for polytetrafluoroethylene and polyurethane, respectively. We showed that the thickness, roughness, and stability of the polycatecholamine coatings depend on the chemical structure of the oxidized phenylamine. In vitro experiments showed prominent hemocompatibility of our coatings and significant improvement of the adhesion and proliferation of human umbilical vein endothelial cells. The full confluence on the surface of coated polytetrafluoroethylene was achieved after 5 days of cell culture for all tested polycatecholamines, and it was maintained after 14 days. Hence, the use of polycatecholamine coatings can be a simple and versatile method of surface modification of medical devices intended for contact with blood or used in tissue engineering.

5.
Molecules ; 27(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36080463

RESUMO

The aim of this study was to minimize the risk of life-threatening thromboembolism in the ventricle through the use of a new biomimetic heart valve based on metal-polymer composites. Finite volume element simulations of blood adhesion to the material were carried out, encompassing radial flow and the cone and plane test together with determination of the effect of boundary conditions. Both tilt-disc and bicuspid valves do not have optimized blood flow due to their design based on rigid valve materials (leaflet made of pyrolytic carbon). The main objective was the development of materials with specific properties dedicated to contact with blood. Materials were evaluated by dynamic tests using blood, concentrates, and whole human blood. Hemostability tests under hydrodynamic conditions were related to the mechanical properties of thin-film materials obtained from tribological tests. The quality of the coatings was high enough to avoid damage to the coating even as they were exposed up to maximum loading. Analysis towards blood concentrates of the hydrogenated carbon sample and the nitrogen-doped hydrogenated carbon sample revealed that the interaction of the coating with erythrocytes was the strongest. Hemocompatibility evaluation under hydrodynamic conditions confirmed very good properties of the developed coatings.


Assuntos
Próteses Valvulares Cardíacas , Carbono , Humanos , Hidrodinâmica , Nitrogênio
6.
Biomater Sci ; 10(19): 5498-5503, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35904349

RESUMO

The blood compatibility of self-assembled monolayers (SAMs) of oligoproline, a nonionic antifouling peptide, was investigated using the cone-and-plate assay imitating arterial blood flow conditions. End-capped oligoprolines composed of 6 and 9 proline residues (Pro6 and Pro9) and a Cys residue were synthesized for preparing SAMs (Pro-SAMs) on Au-sputtered glass. The surface of Pro-SAMs indicated hydrophilic property with a smooth topology. The adsorption of blood components and the adhesion of blood cells, including leukocytes and platelets, were strongly suppressed on Pro-SAMs. Moreover, Pro9-SAM did not trigger the activation of platelets (i.e., the conformational change of GPIIb/IIIa and P-selectin (CD62P) expression on platelets and the formation of aggregates). Our results demonstrate that Pro9-SAM completely inhibited acute thrombogenic responses and the activation of platelets under dynamic conditions.


Assuntos
Plaquetas , Selectina-P , Adsorção , Prolina , Propriedades de Superfície
7.
Pharmaceutics ; 14(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631676

RESUMO

Current treatment strategies of autoimmune diseases (ADs) display a limited efficacy and cause numerous adverse effects. Phosphodiesterase (PDE)4 and PDE7 inhibitors have been studied recently as a potential treatment of a variety of ADs. In this study, a PK/PD disease progression modeling approach was employed to evaluate effects of a new theophylline derivative, compound 34, being a strong PDE4 and PDE7 inhibitor. Activity of the studied compound against PDE1 and PDE3 in vitro was investigated. Animal models of multiple sclerosis (MS), rheumatoid arthritis (RA), and autoimmune hepatitis were utilized to assess the efficacy of this compound, and its pharmacokinetics was investigated in mice and rats. A new PK/PD disease progression model of compound 34 was developed that satisfactorily predicted the clinical score-time courses in mice with experimental encephalomyelitis that is an animal model of MS. Compound 34 displayed a high efficacy in all three animal models of ADs. Simultaneous inhibition of PDE types located in immune cells may constitute an alternative treatment strategy of ADs. The PK/PD encephalomyelitis and arthritis progression models presented in this study may be used in future preclinical research, and, upon modifications, may enable translation of the results of preclinical investigations into the clinical settings.

8.
J Asthma ; 59(6): 1087-1094, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33764254

RESUMO

INTRODUCTION: Airway inflammation in asthma is accompanied by reconstruction of the bronchial wall extracellular matrix that most likely occurs with a contribution of matrix metalloproteinases (MMPs). Recently we have reported that omalizumab may decrease reticular basement membrane (RBM) thickness together with fibronectin deposits in asthmatic airways, although mechanisms involved are unknown. OBJECTIVE: In the present study, we have investigated the impact of omalizumab on MMPs concentrations in bronchoalveolar lavage fluid (BAL) of asthmatic subjects in relation to airway remodeling changes in histology. PATIENTS AND METHODS: The study group consisted of 13 severe allergic asthmatics treated with omalizumab for at least 12 months. In each subject, clinical and laboratory parameters, bronchoscopy with BAL, and endobronchial biopsy were evaluated before and after the biologic therapy. RBM thickness, fibronectin, and collagen deposits in bronchial mucosa specimens were analyzed in histology. The investigations also included BAL cytology and BAL concentrations of MMP-2, -3, and -9. RESULTS: Omalizumab was related to a decrease in all measured MMPs in BAL (p < 0.001, each), although such declines were not observed in each patient. The depletions were associated with a lower asthma exacerbation rate and better asthma control. Interestingly, patients who showed a decline in at least one MMP (n = 10, 77%) were characterized by a higher decrease in the RBM thickness (-1.61 [-2.02 to -0.6] vs. -0.06 [-0.09 to +3.3], p = 0.03). Likewise, individuals with lower concentrations of MMP-9 after omalizumab (n = 7, 58%) had a greater reduction in the RBM layer as compared to those with steady MMP-9 levels (-1.8 [-2.4 to -1.14] vs. -0.13 [-0.6 to -0.06] µm, p = 0.03). Moreover, the latter group also had unfavorable higher collagen I accumulation after biologic (42 [20 to 55] vs. 0 [-10 to 20]%, respectively, p = 0.03). Higher concentrations of MMPs in BAL at baseline were related to the lower systemic steroid dose and better omalizumab response concerning the decline in RBM thickness. CONCLUSION: Our data suggest that omalizumab therapy is associated with decreased BAL MMPs concentration in the subgroup of asthma patients. The decline was linked with a reduction in the RBM thickness what might play a beneficial role in airway remodeling.


Assuntos
Asma , Hipersensibilidade , Remodelação das Vias Aéreas , Asma/tratamento farmacológico , Asma/patologia , Líquido da Lavagem Broncoalveolar , Colágeno/uso terapêutico , Fibronectinas , Humanos , Metaloproteinase 9 da Matriz , Omalizumab/uso terapêutico
9.
Bioorg Chem ; 117: 105409, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749117

RESUMO

Phosphodiesterase (PDE) inhibitors are currently an extensively studied group of compounds that can bring many benefits in the treatment of various inflammatory and fibrotic diseases, including asthma. Herein, we describe a series of novel N'-phenyl- or N'-benzylbutanamide and N'-arylidenebutanehydrazide derivatives of 8-aminopurine-2,6-dione (27-43) and characterized them as prominent pan-PDE inhibitors. Most of the compounds exhibited antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)-induced murine macrophages RAW264.7. The most active compounds (32-35 and 38) were evaluated in human bronchial epithelial cells (HBECs) derived from asthmatics. To better map the bronchial microenvironment in asthma, HBECs after exposure to selected 8-aminopurine-2,6-dione derivatives were incubated in the presence of two proinflammatory and/or profibrotic factors: transforming growth factor type ß (TGF-ß) and interleukin 13 (IL-13). Compounds 32-35 and 38 significantly reduced both IL-13- and TGF-ß-induced expression of proinflammatory and profibrotic mediators, respectively. Detailed analysis of their inhibition preferences for selected PDEs showed high affinity for isoenzymes important in the pathogenesis of asthma, including PDE1, PDE3, PDE4, PDE7, and PDE8. The presented data confirm that structural modifications within the 7 and 8 positions of the purine-2,6-dione core result in obtaining preferable pan-PDE inhibitors which in turn exert an excellent anti-inflammatory and anti-fibrotic effect in the bronchial epithelial cells derived from asthmatic patients. This dual-acting pan-PDE inhibitors constitute interesting and promising lead structures for further anti-asthmatic agent discovery.


Assuntos
Antiasmáticos/farmacologia , Anti-Inflamatórios/farmacologia , Antifibróticos/farmacologia , Antioxidantes/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Animais , Antiasmáticos/síntese química , Antiasmáticos/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antifibróticos/síntese química , Antifibróticos/química , Antioxidantes/síntese química , Antioxidantes/química , Humanos , Camundongos , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Células RAW 264.7
10.
Biomolecules ; 11(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34827608

RESUMO

Abdominal aortic aneurysms (AAA) are a complex disease with an unclear pathomechanism. A positive family history is emphasized as a significant risk factor, and a nonspecific model of inheritance suggests participation of epigenetic regulation in the pathogenesis of this disease. Past studies have implicated microRNAs in the development of AAA; therefore in this project, we measured miR-191 levels in AAA patients and compared them with a control group. We found that miR-191 levels were significantly elevated in aneurysmal patients, although this did not correlate with the available clinical data. We then developed an in vitro model where, using cells with an endothelial phenotype, we determined the effect of miR-191 on the transcriptome using RNA sequencing. Subsequent pathway analysis established that some of the perturbations mediated by miR-191 can be explained by several processes which have long been observed and described in literature as accompanying the development of abdominal aortic aneurysms.


Assuntos
Aneurisma da Aorta Abdominal , Epigênese Genética , Humanos , MicroRNAs
11.
J Mater Sci Mater Med ; 32(9): 118, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34459990

RESUMO

This paper presents the results of biocompatibility testing performed on several biomaterial variants for manufacturing a newly designed petal valve intended for use in a pulsatile ventricular assist device or blood pump. Both physical vapor deposition (PVD) and plasma-enhanced chemical vapor deposition (PECVD) were used to coat titanium-based substrates with hydrogenated tetrahedral amorphous carbon (ta-C:H) or amorphous hydrogenated carbon (a-C:H and a-C:H, N). Experiments were carried out using whole human blood under arterial shear stress conditions in a cone-plate analyzer (ap. 1800 1/s). In most cases, tested coatings showed good or very good haemocompatibility. Type a-C:H, N coating proved to be superior in terms of activation, risk of aggregation, and the effects of generating microparticles of apoptotic origin, and also demonstrated excellent mechanical properties. Therefore, a-C:H, N coatings were selected for further in vivo studies. In vivo animal studies were carried out according to the ISO 10993 standard. Intradermal reactivity was assessed in three rabbits and sub-acute toxicity and local effects after implantation were examined in 12 rabbits. Based on postmortem examination, no organ failure or wound tissue damage occurred during the required period of observation. In summary, our investigations demonstrated high biocompatibility of the biomaterials in relation to thrombogenicity, toxicity, and wound healing. Prototypes of the petal valves were manufactured and mounted on the pulsatile ventricular assist device. Hydrodynamic features and impact on red blood cells (hemolysis) as well as coagulation (systemic thrombogenicity) were assessed in whole blood.


Assuntos
Materiais Biocompatíveis , Coração Auxiliar , Hidrodinâmica , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Carbono/química , Carbono/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Hemólise/efeitos dos fármacos , Humanos , Masculino , Teste de Materiais , Desenho de Prótese , Fluxo Pulsátil/fisiologia , Coelhos , Estresse Mecânico , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
12.
Sci Rep ; 11(1): 12821, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140575

RESUMO

Human rhinoviruses (HRV) are frequent cause of asthma exacerbations, however the influence of airway inflammation on the severity of viral infection is poorly understood. Here, we investigated how cytokine-induced remodeling of airway epithelium modulates antiviral response. We analyzed gene expression response in in vitro differentiated bronchial epithelium exposed to cytokines and next infected with HRV16. IL-13-induced mucous cell metaplasia (MCM) was associated with impaired ciliogenesis and induction of antiviral genes, resulting in lower susceptibility to HRV. Epithelial-mesenchymal transition caused by TGF-ß was associated with increased virus replication and boosted innate response. Moreover, HRV infection per se caused transient upregulation of MCM markers and growth factors, followed by low-level virus replication and shedding. Our data suggest that the outcome of HRV infection depends on the type of lower airway inflammation and the extent of epithelial damage. Type-2 inflammation (eosinophilic asthma) may induce antiviral state of epithelium and decrease virus sensitivity, while growth factor exposure during epithelial repair may facilitate virus replication and inflammatory response. Additionally, responses to HRV were similar in cells obtained from asthma patients and control subjects, which implicates that antiviral mechanisms are not intrinsically impaired in asthma, but may develop in the presence of uncontrolled airway inflammation.


Assuntos
Asma/complicações , Brônquios/patologia , Brônquios/virologia , Inflamação/complicações , Infecções por Picornaviridae/virologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Rhinovirus/fisiologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-13/metabolismo , Metaplasia , Infecções por Picornaviridae/patologia , Rhinovirus/genética , Regulação para Cima
13.
Pharmaceutics ; 13(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919375

RESUMO

This study aimed to assess the efficacy and explore the mechanisms of action of a potent phosphodiesterase (PDE)7A and a moderate PDE4B inhibitor GRMS-55 in a mouse model of autoimmune hepatitis (AIH). The concentrations of GRMS-55 and relevant biomarkers were measured in the serum of BALB/c mice with concanavalin A (ConA)-induced hepatitis administered with GRMS-55 at two dose levels. A semi-mechanistic PK/PD/disease progression model describing the time courses of measured biomarkers was developed. The emetogenicity as a potential side effect of the studied compound was evaluated in the α2-adrenoceptor agonist-induced anesthesia model. The results indicate that liver damage observed in mice challenged with ConA was mainly mediated by TNF-α and IFN-γ. GRMS-55 decreased the levels of pro-inflammatory mediators and the transaminase activities in the serum of mice with AIH. The anti-inflammatory properties of GRMS-55, resulting mainly from PDE7A inhibition, led to a high hepatoprotective activity in mice with AIH, which was mediated by an inhibition of pro-inflammatory signaling. GRMS-55 did not induce the emetic-like behavior. The developed PK/PD/disease progression model may be used in future studies to assess the potency and explore the mechanisms of action of new investigational compounds for the treatment of AIH.

14.
Colloids Surf B Biointerfaces ; 201: 111624, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33621749

RESUMO

The main purpose of the work was to develop a drug releasing coatings on the surface of medical devices exposed to blood flow, what should enable effective inhibition of blood coagulation process. As a part of the work, the process of encapsulating the anticoagulant drug eptifibatide (EPT) in poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles was developed. EPT encapsulation efficiency was 29.1 ± 2.1%, while the EPT loading percentage in the nanoparticles was 4.2 ± 0.3%. The PLGA nanoparticles were suspended in a polyanion solution (hyaluronic acid (HA)) and deposited on the surface-treated thermoplastic polyurethane (TPU) by a layer-by-layer method. As a polycation poly-L-lysine (PLL) was used. The influence of released EPT on the activation of the coagulation system was analyzed using dynamic blood tester. Performed experiments show an effective delivery of the drug to the bloodstream and low risk of platelets (membrane receptor) activation. The dynamic blood test process, including its physical phenomenon, was described using numerical methods, i.e. a finite volume cone-and-plate test model as well as non-Newtonian blood models. The values of shear stress and blood flow velocity under the fast-rotating cone were computed applying boundary conditions of cylinder wall imitating blood-nanomaterial interaction. Implementing boundary conditions as initial shear stress values of bottom cylinder wall resulted in the increase of shear stress in blood under rotating cone. The developed system combining drug eluting polymeric nanoparticles with the polyelectrolyte "layer-by-layer" coating can be easily introduced to medical implants of various shape, with the advantages of resorbable drug carriers allowing for local and controllable delivery of anti-thrombogenic drugs.


Assuntos
Nanopartículas , Ácido Poliglicólico , Coagulação Sanguínea , Portadores de Fármacos , Eptifibatida , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Poliuretanos
15.
Colloids Surf B Biointerfaces ; 199: 111562, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33434879

RESUMO

The main purpose of the work was to assess the haemocompatible properties of polyurethane discs with a modified surface dedicated to cardiovascular system regeneration. They were coated with acrylic acid-based material to inhibit the activation of the blood coagulation cascade. This coating improved the wettability of the material, leading to the prevention of protein adsorption on the surface. The blood-material interaction was analyzed in dynamic conditions with a specially designed tester, which helps to control blood-material interaction under high shear stress conditions. The corresponding numerical model of the tester was also developed by finite volume method (FVM). The 3D FVM model allows the determination of shear stresses applying different flow and boundary conditions representing blood-material interactions. The haemocompatibility analyses were performed through in vitro tests using a blood flow simulator. They revealed a low probability of activation of blood coagulation and low leukocyte activation. The original mechanical set-up to test the blood-material interaction helped to prove that acrylic acid-based coatings expressed good haemocompatible properties.


Assuntos
Acrilatos , Poliuretanos , Teste de Materiais , Estresse Mecânico , Propriedades de Superfície , Molhabilidade
16.
J Allergy Clin Immunol ; 147(4): 1269-1280, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32810516

RESUMO

BACKGROUND: Nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (N-ERD) asthma is characterized by chronic rhinosinusitis and intolerance of aspirin and other COX1 inhibitors. Clinical data point to a heterogeneity within the N-ERD phenotype. OBJECTIVE: Our aim was to investigate immune mediator profiles in the lower airways of patients with N-ERD. METHODS: Levels of cytokines (determined by using Luminex assay) and eicosanoids (determined by using mass spectrometry) were measured in bronchoalveolar lavage fluid (BALF) from patients with N-ERD (n = 22), patients with NSAID-tolerant asthma (n = 21), and control subjects (n = 11). mRNA expression in BALF cells was quantified by using TaqMan low-density arrays. RESULTS: Lower airway eosinophilia was more frequent in N-ERD (54.5%) than in NSAID-tolerant asthma (9.5% [P = .009]). The type-2 (T2) immune signature of BALF cells was more pronounced in the eosinophilic subphenotype of N-ERD. Similarly, BALF concentrations of periostin and CCL26 were significantly increased in eosinophilic N-ERD and correlated with T2 signature in BALF cells. Multiparameter analysis of BALF mediators of all patients with asthma revealed the presence of 2 immune endotypes: T2-like (with an elevated level of periostin in BALF) and non-T2/proinflammatory (with higher levels of matrix metalloproteinases and inflammatory cytokines). Patients with N-ERD were classified mostly as having the T2 endotype (68%). Changes in eicosanoid profile (eg, increased leukotriene E4 level) were limited to patients with N-ERD with airway eosinophilia. Blood eosinophilia appeared to be a useful predictor of airway T2 signature (area under the curve [AUC] = 0.83); however, surrogate biomarkers had moderate performance in distinguishing eosinophilic N-ERD (for blood eosinophils, AUC = 0.72; for periostin, AUC = 0.75). CONCLUSIONS: Lower airway immune profiles show considerable heterogeneity of N-ERD, with skewing toward T2 response and eosinophilic inflammation. Increased production of leukotriene E4 was restricted to a subgroup of patients with eosinophilia in the lower airway.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Asma/imunologia , Eosinofilia/imunologia , Rinite/imunologia , Sinusite/imunologia , Adulto , Idoso , Aspirina/efeitos adversos , Biomarcadores , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Eosinófilos/imunologia , Feminino , Humanos , Inflamação/imunologia , Leucotrieno E4/imunologia , Masculino , Pessoa de Meia-Idade , Lavagem Nasal , Neutrófilos/imunologia
17.
Nanomaterials (Basel) ; 10(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365586

RESUMO

Surface functionalization of materials to improve their hemocompatibility is a challenging problem in the field of blood-contacting devices and implants. Polyelectrolyte multilayer films (PEMs), which can mimic functions and structure of an extracellular matrix (ECM), are a promising solution to the urgent need for functional blood-contacting coatings. The properties of PEMs can be easily tuned in order to provide a scaffold with desired physico-chemical parameters. In this study chitosan/chondroitin sulfate (Chi/CS) polyelectrolyte multilayers were deposited on medical polyurethane. Afterwards PEMs were modified by chemical cross-linking and nanoparticles introduction. Coatings with variable properties were tested for their hemocompatibility in the cone-plate tester under dynamic conditions. The obtained results enable the understanding of how substrate properties modulate PEMs interaction with blood plasma proteins and the morphotic elements.

18.
ACS Biomater Sci Eng ; 6(2): 898-911, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464848

RESUMO

The process of modern cardiovascular device fabrication should always be associated with an investigation of how surface properties modulate its hemocompatibility through plasma protein adsorption as well as blood morphotic element activation and adhesion. In this work, a package of novel assays was used to correlate the physicochemical properties of thin ceramic coatings with hemocompatibility under dynamic conditions. Different variants of carbon-based films were prepared on polymer substrates using the magnetron sputtering method. The microstructural, mechanical, and surface physicochemical tests were performed to characterize the coatings, followed by investigation of whole human blood quality changes under blood flow conditions using the "Impact R" test, tubes' tester, and radial flow chamber assay. The applied methodology allowed us to determine that aggregate formation on hydrophobic and hydrophilic carbon-based coatings may follow one of the two different mechanisms dependent on the type and conformational changes of adsorbed blood plasma proteins.


Assuntos
Plaquetas , Materiais Revestidos Biocompatíveis , Cerâmica , Humanos , Teste de Materiais , Propriedades de Superfície
19.
J Asthma ; 57(5): 468-477, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30905217

RESUMO

Introduction: Immunoglobulin E is an important modulator of the inflammatory reaction in allergic asthma. It also contributes to airway remodeling in the course of the disease. The authors evaluated airway structural changes in severe allergic asthma during the omalizumab therapy. Patients and methods: The study included 13 patients with severe allergic asthma treated with omalizumab for at least one year. In each patient clinical, laboratory, and spirometry parameters were evaluated before and after the treatment. In addition, bronchoscopy with bronchial mucosa biopsy and bronchoalveolar lavage was performed. The basal lamina thickness, inflammatory cell infiltration, fibronectin, as well as type I and III collagen accumulation were assessed in bronchial mucosa specimens, together with the assessment of bronchoalveolar lavage cellularity. Results: The omalizumab therapy led to a decrease in the basal lamina thickness (p = 0.002), and to a reduction in fibronectin (p = 0.02), but not collagen deposits in the bronchial mucosa. The decrease in fibronectin accumulation was associated with an improvement in asthma control and quality of life (p = 0.01, both), and a diminished dose of systemic corticosteroids (p = 0.001). It was also associated with a tendency towards reduction of the eosinophil count in the peripheral blood, bronchoalveolar lavage fluid, and bronchial mucosa specimens. Conclusion: Our study has shown that omalizumab, effective in the treatment of severe allergic asthma, may also decrease unfavorable structural airway changes in allergic asthmatics, at least with respect to the fibronectin deposit and an increased thickness of the basal lamina. However, more extensive observational studies are needed to verify the above hypothesis.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Asma/metabolismo , Membrana Basal/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Omalizumab/uso terapêutico , Mucosa Respiratória/efeitos dos fármacos , Adulto , Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/patologia , Asma/fisiopatologia , Membrana Basal/metabolismo , Membrana Basal/patologia , Brônquios/metabolismo , Brônquios/patologia , Feminino , Fibronectinas/metabolismo , Humanos , Imunoglobulina E/sangue , Masculino , Pessoa de Meia-Idade , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Espirometria , Resultado do Tratamento
20.
Respir Med ; 152: 51-59, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31128610

RESUMO

BACKGROUND: Aspirin desensitization (AD) is an effective and safe therapeutic option for patients with nonsteroidal anti-inflammatory drugs (NSAIDs)-exacerbated respiratory disease (N-ERD). The mechanisms driving its beneficial effects remain poorly understood. OBJECTIVE: To investigate the effect of long-term AD on clinical, biochemical and radiological changes in N-ERD patients. METHODS: The study group consisted of twenty-three individuals with N-ERD who underwent AD, followed by ingestion of 325 mg aspirin twice daily. Twenty patients completed the 52 weeks of AD. The following evaluations were conducted at baseline and in the 52nd week of AD: (i) clinical: asthma exacerbations, Asthma Control Test (ACT), Visual Analogue Scale (VAS) for the assessment of nasal symptoms; (ii) blood and induced sputum supernatant (ISS) periostin, (iii) phenotypes based on induced sputum (IS) cells, (iiii) ISS and nasal lavage (NL) concentration of prostaglandin D2 (PGD2), prostaglandin E2 (PGE2), tetranor-PGD-M, tetranor-PGE-M, 8-iso-PGE2, leukotriene B4 (LTB4), LTC4, LTD4 and LTE4, and urine LTE4. RESULTS: A significant improvement was observed in ACT (P = 0.02) and VAS score (P = 0.008) in the 52nd week of AD. ISS periostin and IS eosinophil count decreased significantly in the 52nd week of AD (P = 0.04 and P = 0.01, respectively). ISS and NL eicosanoid concentrations did not change following long-term AD. CONCLUSION: and Clinical Relevance: AD is associated with a decrease in sputum periostin biosynthesis, which may prevent the recruitment of eosinophils into respiratory tissue and be one of explanation of the clinical benefits of AD. Long-term aspirin administration does not lead to an imbalance between pro- and anti-inflammatory ISS eicosanoids.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Aspirina/efeitos adversos , Dessensibilização Imunológica/métodos , Transtornos Respiratórios/imunologia , Escarro/metabolismo , Adulto , Idoso , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Aspirina/administração & dosagem , Aspirina/uso terapêutico , Asma/induzido quimicamente , Asma/metabolismo , Asma/fisiopatologia , Biomarcadores/sangue , Biomarcadores/urina , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/sangue , Moléculas de Adesão Celular/efeitos dos fármacos , Eicosanoides/metabolismo , Eosinófilos/efeitos dos fármacos , Feminino , Humanos , Lipoproteínas/metabolismo , Masculino , Pessoa de Meia-Idade , Líquido da Lavagem Nasal/imunologia , Estudos Prospectivos , Transtornos Respiratórios/induzido quimicamente , Exacerbação dos Sintomas , Transativadores/metabolismo , Escala Visual Analógica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA