Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Endocr Soc ; 7(10): bvad108, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37646011

RESUMO

5α-reductase-1 catalyzes production of various steroids, including neurosteroids. We reported previously that expression of its encoding gene, Srd5a1, drops in murine ovaries and hypothalamic preoptic area (POA) after early-life immune stress, seemingly contributing to delayed puberty and ovarian follicle depletion, and in the ovaries the first intron was more methylated at two CpGs. Here, we hypothesized that this CpG-containing locus comprises a methylation-sensitive transcriptional enhancer for Srd5a1. We found that ovarian Srd5a1 mRNA increased 8-fold and methylation of the same two CpGs decreased up to 75% between postnatal days 10 and 30. Estradiol (E2) levels rise during this prepubertal stage, and exposure of ovarian cells to E2 increased Srd5a1 expression. Chromatin immunoprecipitation in an ovarian cell line confirmed ESR1 binding to this differentially methylated genomic region and enrichment of the enhancer modification, H3K4me1. Targeting dCas9-DNMT3 to this locus increased CpG2 methylation 2.5-fold and abolished the Srd5a1 response to E2. In the POA, Srd5a1 mRNA levels decreased 70% between postnatal days 7 and 10 and then remained constant without correlation to CpG methylation levels. Srd5a1 mRNA levels did not respond to E2 in hypothalamic GT1-7 cells, even after dCas9-TET1 reduced CpG1 methylation by 50%. The neonatal drop in POA Srd5a1 expression occurs at a time of increasing glucocorticoids, and treatment of GT1-7 cells with dexamethasone reduced Srd5a1 mRNA levels; chromatin immunoprecipitation confirmed glucocorticoid receptor binding at the enhancer. Our findings on the tissue-specific regulation of Srd5a1 and its methylation-sensitive control by E2 in the ovaries illuminate epigenetic mechanisms underlying reproductive phenotypic variation that impact life-long health.

2.
Gene Ther ; 29(5): 294-303, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301447

RESUMO

The reproductive axis is activated by gonadotropin-releasing hormone (GnRH), which stimulates the pituitary gonadotropes to secrete hormones that drive gonadal function and steroidogenesis. Thus repression of this axis, which is conserved across mammals and sexes, can reduce steroid levels and/or prevent reproduction. Steroid-dependent pathologies, including various cancers, are commonly treated with GnRH super-analogs which have long-term side-effects, while humane solutions for controlling reproduction in domestic and wild animal populations are lacking. GnRH-conjugated toxins are undergoing clinical trials for GnRHR-expressing cancer cells, and have been examined for gonadotrope ablation in animals, but showed low and/or transient effects and administration of toxins has many potential complications. Here we exploit GnRH targeting to gonadotropes to deliver DNA encoding an effector that induces gonadotropin gene repressive epigenetic modifications which are perpetuated over time. Several layers of specificity are endowed through targeting to GnRHR-expressing cells and due to local cleavage of the peptide packaging the DNA; the DNA-encoded effector is expressed and directed to the target genes by the DNA binding domain of a highly specific transcription factor. This design has multiple advantages over existing methods of shutting down the reproductive axis, and its modular design should allow adaptation for broad applications.


Assuntos
Repressão Epigenética , Hormônio Liberador de Gonadotropina , Animais , DNA/genética , Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/genética , Gonadotropinas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
3.
BMC Biol ; 20(1): 11, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996447

RESUMO

BACKGROUND: Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. RESULTS: Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women's buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. CONCLUSIONS: SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Colestenona 5 alfa-Redutase , Kisspeptinas , Proteínas de Membrana/metabolismo , Adaptação Fisiológica , Animais , Colestenona 5 alfa-Redutase/genética , Colestenona 5 alfa-Redutase/metabolismo , Epigênese Genética , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos
4.
Mol Cell Endocrinol ; 533: 111349, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34090968

RESUMO

The chromatin organization of the gonadotropin gene promoters in the pituitary gonadotropes plays a major role in determining how these gene are activated, but is difficult to study because of the low numbers of these cells in the pituitary gland. Here, we set out to create a cell model to study gonadotropin chromatin, and found that by optimizing cell culture conditions, we can maintain stable proliferating cultures of primary non-transformed gonadotrope cells over weeks to months. Although expression of the gonadotropin genes drops very low, these cells are enriched in gonadotrope markers and respond to GnRH. Furthermore, >85% of the cells contained Lhb and/or Fshb mature transcripts; though these were virtually restricted to the nuclei. The gonadotropes were harvested initially due to expression of dTOMATO, following activation of Cre recombinase by the Gnrhr promoter. Over 6 mo in culture, a similar proportion of the recombined DNA was maintained (i.e. cells derived from the original gonadotropes or having acquired Gnrhr-promoter activity), together with cells of a distinct origin. The cells are enriched with markers of proliferating pituitary and stem cells, including Sox2, suggesting that multipotent precursor cells might have proliferated and differentiated into gonadotrope-like cells. These cell cultures offer a new and versatile methodology for research in gonadotrope differentiation and function, and can provide enough primary cells for chromatin immunoprecipitation and epigenetic analysis, while our initial studies also indicate a possible regulatory mechanism that might be involved in the nuclear export of gonadotropin gene mRNAs.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/genética , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Luteinizante Subunidade beta/genética , Hipófise/citologia , Cultura Primária de Células/métodos , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Hipófise/metabolismo , Regiões Promotoras Genéticas , Receptores LHRH/genética , Análise de Sequência de RNA
5.
Nat Rev Endocrinol ; 16(9): 519-533, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32620937

RESUMO

Reproductive function adjusts in response to environmental conditions in order to optimize success. In humans, this plasticity includes age of pubertal onset, hormone levels and age at menopause. These reproductive characteristics vary across populations with distinct lifestyles and following specific childhood events, and point to a role for the early-life environment in shaping adult reproductive trajectories. Epigenetic mechanisms respond to external signals, exert long-term effects on gene expression and have been shown in animal and cellular studies to regulate normal reproductive function, strongly implicating their role in these adaptations. Moreover, human cohort data have revealed differential DNA methylation signatures in proxy tissues that are associated with reproductive phenotypic variation, although the cause-effect relationships are difficult to discern, calling for additional complementary approaches to establish functionality. In this Review, we summarize how adult reproductive function can be shaped by childhood events. We discuss why the influence of the childhood environment on adult reproductive function is an important consideration in understanding how reproduction is regulated and necessitates consideration by clinicians treating women with diverse life histories. The resolution of the molecular mechanisms responsible for human reproductive plasticity could also lead to new approaches for intervention by targeting these epigenetic modifications.


Assuntos
Adaptação Fisiológica/genética , Meio Ambiente , Epigênese Genética/fisiologia , Reprodução/genética , Envelhecimento , Animais , Metilação de DNA , Feminino , Fertilidade , Desenvolvimento Fetal , Humanos , Estilo de Vida , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Fenótipo , Gravidez , Progesterona/sangue , Puberdade/genética , Reprodução/fisiologia , Testosterona/sangue , Migrantes
6.
FASEB J ; 33(1): 1020-1032, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30074825

RESUMO

The connection between metabolism and reproductive function is well recognized, and we hypothesized that the pituitary gonadotropes, which produce luteinizing hormone and follicle-stimulating hormone (FSH), mediate some of the effects directly via insulin-independent glucose transporters, which allow continued glucose metabolism during hyperglycemia. We found that glucose transporter 1 is the predominant glucose transporter in primary gonadotropes and a gonadotrope precursor-derived cell line, and both are responsive to culture in high glucose; moreover, metabolite levels were altered in the cell line. Several of the affected metabolites are cofactors for chromatin-modifying enzymes, and in the gonadotrope precursor-derived cell line, we recorded global changes in histone acetylation and methylation, decreased DNA methylation, and increased hydroxymethylation, some of which did not revert to basal levels after cells were returned to normal glucose. Despite this weakening of epigenetic-mediated repression seen in the model cell line, FSH ß-subunit ( Fshb) mRNA levels in primary gonadotropes were significantly reduced, apparently due in part to increased autocrine/paracrine effects of inhibin. However, unlike thioredoxin interacting protein and inhibin subunit α, Fshb mRNA levels did not recover after the return of cells to normal glucose. The effect on Fshb expression was also seen in 2 hyperglycemic mouse models, and levels of circulating FSH, required for follicle growth and development, were reduced. Thus, hyperglycemia seems to target the pituitary gonadotropes directly, and the likely extensive epigenetic changes are sensed acutely by Fshb. This scenario would explain clinical findings in which, even after restoration of optimal blood glucose levels, fertility often remains adversely affected. However, the relative accessibility of the pituitary provides a possible target for treatment, particularly crucial in the young in which hyperglycemia is increasingly common and fertility most relevant.-Feldman, A., Saleh, A., Pnueli, L., Qiao, S., Shlomi, T., Boehm, U., Melamed, P. Sensitivity of pituitary gonadotropes to hyperglycemia leads to epigenetic aberrations and reduced follicle-stimulating hormone levels.


Assuntos
Epigênese Genética , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Gonadotrofos/metabolismo , Hiperglicemia/metabolismo , Acetilação , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Metilação de DNA , Subunidade beta do Hormônio Folículoestimulante/sangue , Subunidade beta do Hormônio Folículoestimulante/genética , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Hiperglicemia/genética , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Tiorredoxinas/metabolismo
7.
Front Cell Dev Biol ; 6: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556496

RESUMO

Discovery of the ten-eleven translocation 1 (TET) methylcytosine dioxygenase family of enzymes, nearly 10 years ago, heralded a major breakthrough in understanding the epigenetic modifications of DNA. Initially described as catalyzing the oxidation of methyl cytosine (5mC) to hydroxymethyl cytosine (5hmC), it is now clear that these enzymes can also catalyze additional reactions leading to active DNA demethylation. The association of TET enzymes, as well as the 5hmC, with active regulatory regions of the genome has been studied extensively in embryonic stem cells, although these enzymes are expressed widely also in differentiated tissues. However, TET1 and TET3 are found as various isoforms, as a result of utilizing alternative regulatory regions in distinct tissues. Some of these isoforms, like TET2, lack the CXXC domain which probably has major implications on their recruitment to specific loci in the genome, while in certain contexts TET1 is seen paradoxically to repress transcription. In this review we bring together these novel aspects of the differential regulation of these Tet isoforms and the likely consequences on their activity.

8.
Artigo em Inglês | MEDLINE | ID: mdl-29535683

RESUMO

Gonadotropin-releasing hormone (GnRH) stimulates the expression of multiple genes in the pituitary gonadotropes, most notably to induce synthesis of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), but also to ensure the appropriate functioning of these cells at the center of the mammalian reproductive endocrine axis. Aside from the activation of gene-specific transcription factors, GnRH stimulates through its membrane-bound receptor, alterations in the chromatin that facilitate transcription of its target genes. These include changes in the histone and DNA modifications, nucleosome positioning, and chromatin packaging at the regulatory regions of each gene. The requirements for each of these events vary according to the DNA sequence which determines the basal chromatin packaging at the regulatory regions. Despite considerable progress in this field in recent years, we are only beginning to understand some of the complexities involved in the role and regulation of this chromatin structure, including new modifications, extensive cross talk, histone variants, and the actions of distal enhancers and non-coding RNAs. This short review aims to integrate the latest findings on GnRH-induced alterations in the chromatin of its target genes, which indicate multiple and diverse actions. Understanding these processes is illuminating not only in the context of the activation of these hormones during the reproductive life span but may also reveal how aberrant epigenetic regulation of these genes leads to sub-fertility.

9.
J Biol Chem ; 292(50): 20720-20731, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054929

RESUMO

Pituitary gonadotropin hormones are regulated by gonadotropin-releasing hormone (GnRH) via MAPK signaling pathways that stimulate gene transcription of the common α-subunit (Cga) and the hormone-specific ß-subunits of gonadotropin. We have reported previously that GnRH-induced activities at these genes include various histone modifications, but we did not examine histone phosphorylation. This modification adds a negative charge to residues of the histone tails that interact with the negatively charged DNA, is associated with closed chromatin during mitosis, but is increased at certain genes for transcriptional activation. Thus, the functions of this modification are unclear. We initially hypothesized that GnRH might induce phosphorylation of Ser-10 in histone 3 (H3S10p) as part of its regulation of gonadotropin gene expression, possibly involving cross-talk with H3K9 acetylation. We found that GnRH increases the levels of both modifications around the Cga gene transcriptional start site and that JNK inhibition dramatically reduces H3S10p levels. However, this modification had only a minor effect on Cga expression and no effect on H3K9ac. GnRH also increased H3S28p and H3K27ac levels and also those of activated mitogen- and stress-activated protein kinase 1 (MSK1). MSK1 inhibition dramatically reduced H3S28p levels in untreated and GnRH-treated cells and also affected H3K27ac levels. Although not affecting basal Cga expression, MSK1/2 inhibition repressed GnRH activation of Cga expression. Moreover, ChIP analysis revealed that GnRH-activated MSK1 targets the first nucleosome just downstream from the TSS. Given that the elongating RNA polymerase II (RNAPII) stalls at this well positioned nucleosome, GnRH-induced H3S28p, possibly in association with H3K27ac, would facilitate the progression of RNAPII.


Assuntos
Regulação da Expressão Gênica , Subunidade alfa de Hormônios Glicoproteicos/agonistas , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Nucleossomos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sítio de Iniciação de Transcrição , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Gonadotrofos/efeitos dos fármacos , Gonadotrofos/enzimologia , Histonas/metabolismo , Lisina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Nucleossomos/enzimologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores LHRH/agonistas , Receptores LHRH/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Serina/metabolismo , Sítio de Iniciação de Transcrição/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 114(38): 10131-10136, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28855337

RESUMO

The TET enzymes catalyze conversion of 5-methyl cytosine (5mC) to 5-hydroxymethyl cytosine (5hmC) and play important roles during development. TET1 has been particularly well-studied in pluripotent stem cells, but Tet1-KO mice are viable, and the most marked defect is abnormal ovarian follicle development, resulting in impaired fertility. We hypothesized that TET1 might play a role in the central control of reproduction by regulating expression of the gonadotropin hormones, which are responsible for follicle development and maturation and ovarian function. We find that all three TET enzymes are expressed in gonadotrope-precursor cells, but Tet1 mRNA levels decrease markedly with completion of cell differentiation, corresponding with an increase in expression of the luteinizing hormone gene, Lhb We demonstrate that poorly differentiated gonadotropes express a TET1 isoform lacking the N-terminal CXXC-domain, which represses Lhb gene expression directly and does not catalyze 5hmC at the gene promoter. We show that this isoform is also expressed in other differentiated tissues, and that it is regulated by an alternative promoter whose activity is repressed by the liganded estrogen and androgen receptors, and by the hypothalamic gonadotropin-releasing hormone through activation of PKA. Its expression is also regulated by DNA methylation, including at an upstream enhancer that is protected by TET2, to allow Tet1 expression. The down-regulation of TET1 relieves its repression of the methylated Lhb gene promoter, which is then hydroxymethylated and activated by TET2 for full reproductive competence.


Assuntos
Metilação de DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/fisiologia , Gonadotrofos/metabolismo , Hormônio Luteinizante/biossíntese , Proteínas Proto-Oncogênicas/metabolismo , Reprodução/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Feminino , Gonadotrofos/citologia , Hormônio Luteinizante/genética , Camundongos , Camundongos Knockout , Domínios Proteicos , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
11.
Protein Sci ; 26(7): 1266-1277, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28329910

RESUMO

Nucleosomes at the promoters of genes regulate the accessibility of the transcription machinery to DNA, and function as a basic layer in the complex regulation of gene expression. Our understanding of the role of the nucleosome's spontaneous, thermally driven position changes in modulating expression is lacking. This is the result of the paucity of experimental data on these dynamics, at high-resolution, and for DNA sequences that belong to real, transcribed genes. We have developed an assay that uses partial, reversible unzipping of nucleosomes with optical tweezers to repeatedly probe a nucleosome's position over time. Using the nucleosomes at the promoters of two model genes, Cga and Lhb, we show that the mobility of nucleosomes is modulated by the sequence of DNA and by the use of alternative histone variants, and describe how the mobility can affect transcription, at the initiation and elongation phases.


Assuntos
Regulação da Expressão Gênica/fisiologia , Subunidade alfa de Hormônios Glicoproteicos/biossíntese , Histonas/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/fisiologia , Transcrição Gênica/fisiologia , Animais , Subunidade alfa de Hormônios Glicoproteicos/genética , Histonas/genética , Humanos , Nucleossomos/genética
12.
Nat Commun ; 7: 12958, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27653784

RESUMO

The structure and dynamics of promoter chromatin have a profound effect on the expression levels of genes. Yet, the contribution of DNA sequence, histone post-translational modifications, histone variant usage and other factors in shaping the architecture of chromatin, and the mechanisms by which this architecture modulates expression of specific genes are not yet completely understood. Here we use optical tweezers to study the roles that DNA sequence and the histone variant H2A.Z have in shaping the chromatin landscape at the promoters of two model genes, Cga and Lhb. Guided by MNase mapping of the promoters of these genes, we reconstitute nucleosomes that mimic those located near the transcriptional start site and immediately downstream (+1), and measure the forces required to disrupt these nucleosomes, and their mobility along the DNA sequence. Our results indicate that these genes are basally regulated by two distinct strategies, making use of H2A.Z to modulate separate phases of transcription, and highlight how DNA sequence, alternative histone variants and remodelling machinery act synergistically to modulate gene expression.

13.
Transcription ; 7(1): 26-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934309

RESUMO

Active transcriptional enhancers are often transcribed to eRNAs, whose changing levels mirror those of the target gene mRNA. We discuss some of the reported functions of these eRNAs and their likely diversity to allow utilization of distinct cis regulatory regions to enhance transcription in diverse developmental and cellular contexts.


Assuntos
Elementos Facilitadores Genéticos , RNA/química , Transcrição Gênica , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Metilação , Regiões Promotoras Genéticas , RNA/genética , Sítio de Iniciação de Transcrição
14.
BMC Mol Biol ; 16: 17, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26404137

RESUMO

BACKGROUND: mRNA binding proteins (RBPs) constitute 10-15% of the eukaryotic proteome and play important part in post-transcriptional regulation of gene expression. Due to the instability of RNA and the transient nature its interaction with RBPs, identification of novel RBPs is a significant challenge. Recently, a novel methodology for RBP purification and identification (termed RaPID) was presented, which allows high affinity purification of RBPs while associated with mRNA in vivo. RESULTS: We performed a RaPID screen for proteins that interact with PMP1 mRNA in order to identify novel mRNA binding proteins. PMP1 mRNA was tagged in its 3' UTR with multiple MS2 loops and co-expressed with MS2-binding protein fused to streptavidin binding protein (SBP). RNA-protein complexes were cross-linked in vivo and isolated through streptavidin beads. The eluted proteins were subjected to mass spectroscopy analysis. The screen identified many proteins, about half of them were previously shown to bind RNA. We focused on eEF3 (YEF3), an essential translation elongation factor that interacts with ribosomes. Purification of TAP-tagged Yef3 with its associated RNAs confirmed that the native PMP1 transcript is associated with it. Intriguingly, high association with Yef3-TAP was observed when purification was performed in the presence of EDTA, and with PMP1 that contains stop codons immediately downstream to the initiation codon. Furthermore, high association was observed with a transcript containing only the 3' UTR of PMP1. Complementary, RaPID isolation of MS2-tagged 3' UTRs with their associated proteins revealed that Yef3 can efficiently interact with these regions. CONCLUSIONS: This study identifies many novel proteins that interact with PMP1 mRNA. Importantly, the elongation factor Yef3 was found to interact with mRNA in non-coding regions and in a translation independent manner. These results suggest an additional, non-elongation function for this factor.


Assuntos
Proteínas de Membrana/genética , Fatores de Alongamento de Peptídeos/genética , Proteolipídeos/genética , ATPases Translocadoras de Prótons/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas/genética , Regulação Fúngica da Expressão Gênica/genética , Proteínas de Membrana/metabolismo , Ligação Proteica/fisiologia , Biossíntese de Proteínas/genética , Proteolipídeos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Estreptavidina/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(14): 4369-74, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25810254

RESUMO

Since the discovery that many transcriptional enhancers are transcribed into long noncoding RNAs termed "enhancer RNAs" (eRNAs), their putative role in enhancer function has been debated. Very recent evidence has indicted that some eRNAs play a role in initiating or activating transcription, possibly by helping recruit and/or stabilize binding of the general transcription machinery to the proximal promoter of their target genes. The distal enhancer of the gonadotropin hormone α-subunit gene, chorionic gonadotropin alpha (Cga), is responsible for Cga cell-specific expression in gonadotropes and thyrotropes, and we show here that it encodes two bidirectional nonpolyadenylated RNAs whose levels are increased somewhat by exposure to gonadotropin-releasing hormone but are not necessarily linked to Cga transcriptional activity. Knockdown of the more distal eRNA led to a drop in Cga mRNA levels, initially without effect on the forward eRNA levels. With time, however, the repression on the Cga increased, and the forward eRNA levels were suppressed also. We demonstrate that the interaction of the enhancer with the promoter is lost after eRNA knockdown. Dramatic changes also were seen in the chromatin, with an increase in total histone H3 occupancy throughout this region and a virtual loss of histone H3 Lys 4 trimethylation at the promoter following the eRNA knockdown. Moreover, histone H3 Lys 27 (H3K27) acetylation, which was found at both enhancer and promoter in wild-type cells, appeared to have been replaced by H3K27 trimethylation at the enhancer. Thus, the Cga eRNA mediates the physical interaction between these genomic regions and determines the chromatin structure of the proximal promoter to allow gene expression.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , RNA/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Ilhas de CpG , Metilação de DNA , Regulação da Expressão Gênica , Histonas/metabolismo , Camundongos , Hipófise/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo
16.
Biochim Biophys Acta ; 1849(3): 328-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25591470

RESUMO

The genes encoding luteinizing hormone and follicle stimulating hormone are activated by gonadotropin-releasing hormone (GnRH), and we hypothesized that this involves GnRH-induction of various histone modifications. At basal conditions in an immature gonadotrope-derived cell line, the hormone-specific ß-subunit gene promoters are densely packed with histones, and contain low levels of H3K4 trimethylation (H3K4me3). GnRH both induces this modification and causes histone loss, creating a more active chromatin state. The H3K4me3 appears to be mediated by menin and possibly catalyzed by the menin-mixed-lineage leukemia (MLL) 1/2 methyl transferase complex, as inhibition of MLL recruitment or menin knockdown reduced gene expression and the levels of H3K4me3 on all three promoters. Menin recruitment to the ß-subunit gene promoters is increased by GnRH, possibly involving transcription factors such as estrogen receptor α and/or steroidogenic factor 1, with which menin interacts. Menin also interacts with ring finger protein 20, which ubiquitylates H2BK120 (H2BK120ub), which was reported to be a pre-requisite for H3K4me3 at various gene promoters. Although levels of H2BK120ub are increased by GnRH in the coding regions of these genes, levels at the promoters do not correlate with those of H3K4me3, nor with gene expression, suggesting that H3K4me3 is not coupled to H2BK120ub in transcriptional activation of these genes.


Assuntos
Hormônio Foliculoestimulante/biossíntese , Hormônio Liberador de Gonadotropina/biossíntese , Gonadotropinas/genética , Hormônio Luteinizante/biossíntese , Proteínas Proto-Oncogênicas/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Receptor alfa de Estrogênio/metabolismo , Hormônio Foliculoestimulante/genética , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Liberador de Gonadotropina/genética , Gonadotropinas/biossíntese , Histona Desmetilases/genética , Histonas/genética , Hormônio Luteinizante/genética , Camundongos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Ativação Transcricional
17.
Mol Cell Biol ; 31(24): 5023-36, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21986493

RESUMO

Gonadotropin-releasing hormone (GnRH) regulates the expression of all three gonadotropin genes, encoding the common α subunit (αGSU) and hormone-specific ß subunits, through the activation of several signal transduction pathways. We have shown that GnRH also upregulates calcineurin, and we hypothesized that calcineurin mediates the effects of GnRH on the transcription of the αGSU and follicle-stimulating hormone ß (FSHß) genes through two of its targets: nuclear factor of activated T cells (NFAT) and CREB-regulated transcription coactivator (TORC). We show that calcineurin is essential for GnRH-induced expression of both genes but that NFAT and TORC1 play quite distinct roles in activating each gene. GnRH induces calcineurin-dependent nuclear import of NFAT3, which activates the αGSU promoter, while TORC1 also mediates GnRH activation of this promoter, but not through CREB. GnRH initially stimulates the degradation of TORC1 but protects the N terminus of the newly synthesized protein to enhance its activity. Calcineurin induces Nur77 expression, likely via NFAT3, and Nur77 interacts synergistically with TORC1 and CREB to increase FSHß promoter activity. Although TORC plays a role in the basal activity of the FSHß promoter, it does not interact with phosphorylated CREB and probably does not play a major role in direct GnRH signaling to this gene. TORC may be part of an alternatively regulated pathway, possibly involving cross talk with other stimulatory hormones.


Assuntos
Calcineurina/metabolismo , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Calcineurina/genética , Linhagem Celular , Subunidade beta do Hormônio Folículoestimulante/genética , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Camundongos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fosforilação , Plasmídeos , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
18.
Microsc Microanal ; 17(2): 176-90, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21333032

RESUMO

Contemporary research aims to understand biological processes not only by identifying participating proteins, but also by characterizing the dynamics of their interactions. Because Förster's Resonance Energy Transfer (FRET) is invaluable for the latter undertaking, its usage is steadily increasing. However, FRET measurements are notoriously error-prone, especially when its inherent efficiency is low, a not uncommon situation. Furthermore, many FRET methods are either difficult to implement, are not appropriate for observation of cellular dynamics, or report instrument-specific indices that hamper communication of results within the scientific community. We present here a novel comprehensive spectral methodology, SpRET, which substantially increases both the reliability and sensitivity of FRET microscopy, even under unfavorable conditions such as weak fluorescence or the presence of noise. While SpRET overcomes common pitfalls such as interchannel crosstalk and direct excitation of the acceptor, it also excels in removal of autofluorescence or background contaminations and in correcting chromatic aberrations, often overlooked factors that severely undermine FRET experiments. Finally, SpRET quantitatively reports absolute rather than relative FRET efficiency values, as well as the acceptor-to-donor molar ratio, which is critical for full and proper interpretation of FRET experiments. Thus, SpRET serves as an advanced, improved, and powerful tool in the cell biologist's toolbox.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Células/química , Células/metabolismo , Transferência Ressonante de Energia de Fluorescência/instrumentação , Células HEK293 , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Sensibilidade e Especificidade
19.
Genetics ; 186(3): 829-41, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20739709

RESUMO

Transcriptional regulation is a key mechanism that controls the fate and response of cells to diverse signals. Therefore, the identification of the DNA-binding proteins, which mediate these signals, is a crucial step in elucidating how cell fate is regulated. In this report, we applied both bioinformatics and functional genomic approaches to scrutinize the unusually large promoter of the IME1 gene in budding yeast. Using a recently described fluorescent protein-based reporter screen, reporter-synthetic genetic array (R-SGA), we assessed the effect of viable deletion mutants on transcription of various IME1 promoter-reporter genes. We discovered potential transcription factors, many of which have no perfect consensus site within the IME1 promoter. Moreover, most of the cis-regulatory sequences with perfect homology to known transcription factor (TF) consensus were found to be nonfunctional in the R-SGA analysis. In addition, our results suggest that lack of conservation may not discriminate against a TF regulatory role at a specific promoter. We demonstrate that Sum1 and Sok2, which regulate IME1, bind to nonperfect consensuses within nonconserved regions in the sensu stricto Saccharomyces strains. Our analysis supports the view that although comparative analysis can provide a useful guide, functional assays are required for accurate identification of TF-binding site interactions in complex promoters.


Assuntos
Genes Reporter , Testes Genéticos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Sequência de Bases , Biologia Computacional , Sequência Conservada/genética , Genes Fúngicos/genética , Genes Sintéticos/genética , Ensaios de Triagem em Larga Escala , Meiose/genética , Dados de Sequência Molecular , Ligação Proteica , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo
20.
Mol Cell Biol ; 30(1): 284-94, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19858288

RESUMO

mRNAs encoding mitochondrial proteins are enriched in the vicinity of mitochondria, presumably to facilitate protein transport. A possible mechanism for enrichment may involve interaction of the translocase of the mitochondrial outer membrane (TOM) complex with the precursor protein while it is translated, thereby leading to association of polysomal mRNAs with mitochondria. To test this hypothesis, we isolated mitochondrial fractions from yeast cells lacking the major import receptor, Tom20, and compared their mRNA repertoire to that of wild-type cells by DNA microarrays. Most mRNAs encoding mitochondrial proteins were less associated with mitochondria, yet the extent of decrease varied among genes. Analysis of several mRNAs revealed that optimal association of Tom20 target mRNAs requires both translating ribosomes and features within the encoded mitochondrial targeting signal. Recently, Puf3p was implicated in the association of mRNAs with mitochondria through interaction with untranslated regions. We therefore constructed a tom20 Delta puf3 Delta double-knockout strain, which demonstrated growth defects under conditions where fully functional mitochondria are required. Mislocalization effects for few tested mRNAs appeared stronger in the double knockout than in the tom20 Delta strain. Taken together, our data reveal a large-scale mRNA association mode that involves interaction of Tom20p with the translated mitochondrial targeting sequence and may be assisted by Puf3p.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Biossíntese de Proteínas , Precursores de Proteínas/biossíntese , Sinais Direcionadores de Proteínas , Transporte de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Saccharomyces/genética , Saccharomyces/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA