Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32352, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961933

RESUMO

Previous studies have indicated the efficacy of momordin Ic (MIc), a plant-derived triterpenoid, against several types of cancers, implying its potential for further development. However, comprehensive insights into the molecular mechanisms and targets of MIc in cholangiocarcinoma (CCA) are lacking. This study aimed to investigate the actions of MIc against CCA at the molecular level. Network pharmacology analysis was first employed to predict the mechanisms and targets of MIc. The results unveiled the potential involvement of MIc in apoptosis and cell migration, pinpointing Src and FAK as key targets. Subsequently, cell-based assays, in accordance with FAK/Src-associated metastasis, were conducted, demonstrating the ability of MIc to attenuate the metastatic behaviours of KKU-452 cells. The in vitro results further indicated the capability of MIc to suppress the epithelial-mesenchymal transition (EMT) process, notably by downregulating EMT regulators, including N-cadherin, vimentin, ZEB2 and FOXC1/2 expression. Furthermore, MIc suppressed the activation of the FAK/Src signalling pathway, influencing critical downstream factors such as MMP-9, VEGF, ICAM-1, and c-Myc. Molecular docking simulations also suggested that MIc could interact with FAK and Src domains and restrain kinases from being activated by hindering ATP binding. In conclusion, this study employs a comprehensive approach encompassing network pharmacology analysis, in vitro assays, and molecular docking to unveil the mechanisms and targets of MIc in CCA. MIc mitigates metastatic behaviours and suppresses key pathways, offering a promising avenue for future therapeutic strategies against this aggressive cancer.

2.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893569

RESUMO

Oleoresin of Dipterocarpus alatus Roxb. ex G. Don (DA) has been traditionally used for local medicinal applications. Several in vitro studies have indicated its pharmacological potential. However, the low water solubility hinders its use and development for pharmaceutical purposes. The study aimed to (1) formulate oil-in-water (o/w) Pickering emulsions of DA oleoresin and (2) demonstrate its activities in cancer cells. The Pickering emulsions were formulated using biocompatible carboxylated cellulose nanocrystal (cCNC) as an emulsifier. The optimized emulsion comprised 3% (F1) and 4% (v/v) (F2) of oleoresin in 1% cCNC and 0.1 M NaCl, which possessed homogeneity and physical stability compared with other formulations with uniform droplet size and low viscosity. The constituent analysis indicated the presence of the biomarker dipterocarpol in both F1 and F2. The pharmacological effects of the two emulsions were demonstrated in vitro against two cancer cell lines, HepG2 and HCT116. Both F1 and F2 suppressed cancer cell viability. The treated cells underwent apoptosis, as demonstrated by distinct nuclear morphological changes in DAPI-stained cells and Annexin V/PI-stained cells detected by flow cytometry. Our study highlights the prospect of Pickering emulsions for oleoresin, emphasizing enhanced stability and potential pharmacological advantages.


Assuntos
Proliferação de Células , Emulsões , Humanos , Células Hep G2 , Proliferação de Células/efeitos dos fármacos , Emulsões/química , Células HCT116 , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química
3.
Heliyon ; 10(10): e31112, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38799762

RESUMO

Purpose: To assess the impact of concurrent inhibition of the FGFR and PI3K/mTOR signaling pathways on oncogenic characteristics in cholangiocarcinoma (CCA) cells, including proliferation, autophagy, and cell death. Materials and methods: KKU-213A, KKU-100, and KKU-213C cells were treated with either infigratinib or PKI-402 alone or in combination. Cell viability and cell death were evaluated using the sulforhodamine B (SRB) assay and acridine orange/ethidium bromide (AO/EB) staining. Cell cycle progression and apoptotic cell death were analyzed by flow cytometry. Western blotting was performed to assess the expression of proteins involved in cell cycle regulation and autophagy. Additionally, AO staining was employed to assess autophagic induction. Results: The combination of infigratinib and PKI-402 showed a remarked synergistic suppression in cell viability in both CCA cell lines compared to treatment with single inhibitors. This antiproliferative effect was associated with cell cycle arrest in the G2-M phase and a decrease in the expression of cyclin A and cyclin B1 in CCA cells. Furthermore, the combination treatment induced apoptotic cell death to a greater extent than treatment with a single inhibitor. Infigratinib enhanced the induction of autophagy by PKI-402, as evidenced by marked increases of autophagic vacuoles stained acridine orange, levels of LC3B-II and suppression of levels of p-mTOR and. Notably, inhibition of autophagic flux by chloroquine prevented cell death induced by the combination treatment. Conclusions: This study demonstrated that concurrent inhibition of the key FGFR/PI3K/mTOR pathways in CCA carcinogenesis enhances the suppression of CCA cells. The present findings indicate potential clinical implications for using combination treatment modalities in CCA therapy.

4.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980792

RESUMO

Raphanus sativus L. var. caudatus Alef (RS) is an indigenous Thai plant with nutritional and medicinal values such as anticancer activity, but only in vitro. The chemopreventive effects of RS were, therefore, investigated in the initial stage of hepatocarcinogenesis in rats. Diethylnitrosamine (DEN), a carcinogen, was intraperitoneally injected into rats to induce liver cancer. Along with the DEN injection, either aqueous (RS-H2O) or dichloromethane (RS-DCM) extract was administered orally. Immunohistochemistry was used to detect glutathione S-transferase placental (GST-P) positive foci and apoptotic cells in rat livers as indicators of initial-stage carcinogenesis. The underlying mechanisms of chemoprevention were investigated with (a) antimutagenic activity, (b) hepatic phase II enzyme induction, and (c) hepatic pro-inflammatory cytokine gene expression. The results showed that RS-DCM was more potent than RS-H2O in decreasing GST-P positive foci and apoptotic cells induced by DEN. The mechanisms of RS-DCM (phenolics and sulforaphene contents) against liver carcinogenesis (1) block the activity of carcinogens; (2) elevate phase II detoxifying enzymes; and (3) suppress the pro-inflammatory gene expression. RS-H2O (phenolics contents), in contrast, only decreases pro-inflammatory gene expression. In conclusion, the RS extract consisting of phenolics and isothiocyanates exerted significant chemopreventive activity against DEN-induced liver carcinogenesis.

5.
Integr Cancer Ther ; 21: 15347354221124861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36154723

RESUMO

Owing to the crucial role of Src in cancer metastasis, interruption of Src and its signaling has been considered a promising strategy for cancer metastasis treatment. Cucurbitacin B, a dietary triterpenoid, has been shown to possess anti-proliferative and apoptosis-inducing activities in cholangiocarcinoma (CCA) cells via suppressing the activation of FAK which is a main downstream Src effector. We hypothesized that cucurbitacin B might act as a Src suppressant which conferring anti-metastasis effect against CCA cells. To investigate this, the role of Src in regulating metastasis behavior of CCA cells and the effect of cucurbitacin B on Src-mediated metastatic phenotype of these cells were determined. The results showed that activation of Src significantly enhanced the migratory and invasive abilities of CCA cells. Molecular analysis revealed that Src-facilitated metastasis behavior of CCA cells occurred by modifying expression of a wide range of metastasis-related genes in the cells. Consistent with gene expression results, activation of Src significantly induced the protein expression of 2 important metastasis-associated molecules, MMP-9 and VEGF. Cucurbitacin B markedly suppressed activation of Src and its key effector, FAK. As a consequence, the alteration of expression profiles of metastasis-associated genes induced by Src activator in CCA cells was diminished by cucurbitacin B treatment. The compound also down-regulated Src-induced expression of MMP-9 and VEGF proteins in the cells. Moreover, molecular docking analysis revealed that cucurbitacin B could interact with Src kinase domain and possibly restrain the kinase from being activated by hindering the ATP binding. In conclusion, cucurbitacin B exhibited anti-metastatic property in CCA cells via negatively influencing Src and Src-related oncogenic signaling. This compound may therefore be a potential therapeutic drug for further development as an anti-Src agent for treatment of metastatic CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Triterpenos , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Humanos , Metaloproteinase 9 da Matriz , Simulação de Acoplamento Molecular , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/farmacologia , Quinases da Família src/uso terapêutico
6.
Molecules ; 26(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299510

RESUMO

Cratoxylum formosum ssp. pruniflorum (Kurz) Gogelein (CP) is an indigenous plant found mainly in southeast Asia. Several in vitro studies have confirmed its activity against hepatocellular carcinoma; however, in vivo studies of the effect of CP on liver cancer are needed. This study investigated the effect of CP on early-stage hepatocarcinogenesis in rat liver when using diethylnitrosamine (DEN) as a carcinogen. Immunohistochemistry was used to detect (a) upregulation of glutathione S-transferase placental (GST-P) positive foci, (b) the proliferating cell nuclear antigen PCNA, and (c) apoptotic cells in the liver as indicators of early-stage carcinogenesis. Immunohistochemical parameters were observed in rats given CP orally following DEN injection. Rats given DEN presented overexpression of GST-P positive foci, PCNA, and apoptotic cells, indicating the formation of cancerous tissues, and these effects were diminished by CP treatment. CP thus inhibited hepatocarcinogenic effects in an animal model. These results could help plan further in vivo studies and support the use of CP to prevent processes that promote the pathogenesis of hepatocellular carcinoma in humans.


Assuntos
Anticarcinógenos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Clusiaceae/química , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fígado/efeitos dos fármacos , Animais , Carcinógenos/farmacologia , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Dietilnitrosamina/farmacologia , Glutationa Transferase/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Ratos Wistar
7.
Biomed Pharmacother ; 139: 111628, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33940508

RESUMO

Pinus kesiya Royle ex Gordon (PK), widely found in Southeast Asia, has been traditionally used for the treatment of several illnesses. Our previous studies showed that PK was highly cytotoxicity against liver cancer cells. The detailed mechanism of anticancer action of 50% hydro-ethanolic extract of PK's twig was, therefore, investigated in hepatocellular carcinoma HepG2 cells. Cytotoxicity of PK was determined by using NR assay, followed by determination of the mode of cell death by flow cytometry. The apoptosis-inducing effect was determined based on caspases activity, mitochondria membrane potential change, and expression of proteins related to apoptosis by western blot. The biomolecular alteration in the PK-treated HepG2 cells was investigated by FTIR microspectroscopy. Inhibition of topoisomerase I enzyme was determined by using DNA relaxation assay. Results showed that PK displayed high selective cytotoxicity and induced apoptosis against HepG2. FTIR microspectroscopy indicated that PK altered major biomolecules in HepG2 different from melphalan (a positive control), indicating a different mechanism of anticancer action. PK induced apoptotic cell death through the intrinsic pathway by increasing caspases 9 and 3/7 activity, increasing Bax, and decreasing Bcl-2 expression leading to mitochondrial membrane potential changes. PK also inhibited Top I and PARP activity that triggered an intrinsic apoptotic pathway. The phytochemical test presented terpenoids (i.e., α-pinene confirmed by GC-MS), alkaloids, steroids, xanthone, reducing sugar, and saponin. α-Pinene exhibited low cytotoxicity against HepG2, therefore, several terpene derivatives may work synergistically for inducing apoptosis. Our data demonstrated that PK has the potential for further study with chemotherapeutic purposes.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , Pinus/química , Extratos Vegetais/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Caspases/metabolismo , DNA Topoisomerases Tipo I/genética , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244913

RESUMO

l-type amino acid transporter 1 (LAT1) is an amino acid transporter that is overexpressed in several types of cancer and, thus, it can be a potential target for chemotherapy. The objectives of this study were to (a) synthesize LAT1-targeted chlorambucil derivatives and (b) evaluate their LAT1-mediated cellular uptake as well as antiproliferative activity in vitro in the human breast cancer MCF-7 cell line. Chlorambucil was conjugated to l-tyrosine-an endogenous LAT1 substrate-via either ester or amide linkage (compounds 1 and 2, respectively). While chlorambucil itself did not bind to LAT1, its derivatives 1 and 2 bound to LAT1 with a similar affinity as with l-tyrosine and their respective cellular uptake was significantly higher than that of chlorambucil in MCF-7. The results of our cellular uptake study are indicative of antiproliferative activity, as a higher intracellular uptake of chlorambucil derivatives resulted in greater cytotoxicity than chlorambucil by itself. LAT1 thus contributes to intracellular uptake of chlorambucil derivatives and, therefore, increases antiproliferative activity. The understanding gained from our research can be used in the development of LAT1-targeted anticancer drugs and prodrugs for site-selective and enhanced chemotherapeutic activity.


Assuntos
Neoplasias da Mama/metabolismo , Clorambucila/farmacologia , Endocitose , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Tirosina/farmacologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Clorambucila/síntese química , Clorambucila/química , Endocitose/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Ligação Proteica/efeitos dos fármacos , Fatores de Tempo , Tirosina/química
9.
Biomol Ther (Seoul) ; 27(6): 540-552, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31405267

RESUMO

To determine the chemopreventive potential of alyssin and iberin, the in vitro anticancer activities and molecular targets of isothiocyanates (ITCs) were measured and compared to sulforaphane in hepatocellular carcinoma cell HepG2. The SR-FTIR spectra observed a similar pattern vis-à-vis the biomolecular alteration amongst the ITCs-treated cells suggesting a similar mode of action. All of the ITCs in this study cause cancer cell death through both apoptosis and necrosis in concentration dependent manner (20-80 µM). We found no interactions of any of the ITCs studied with DNA. Notwithstanding, all of the ITCs studied increased intracellular reactive oxygen species (ROS) and suppressed tubulin polymerization, which led to cell-cycle arrest in the S and G2/M phase. Alyssin possessed the most potent anticancer ability; possibly due to its ability to increase intracellular ROS rather than tubulin depolymerization. Nevertheless, the structural influence of alkyl chain length on anticancer capabilities of ITCs remains inconclusive. The results of this study indicate an optional, potent ITC (viz., alyssin) because of its underlying mechanisms against hepatic cancer. As a consequence, further selection and development of effective chemotherapeutic ITCs is recommended.

10.
Biomed Pharmacother ; 101: 698-709, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29522950

RESUMO

The structure of the isothiocyanates (ITCs)-erucin, sulforaphane, erysolin, sulforaphene, and phenethyl isothiocyanate-were assessed as well as their respective in vitro anticancer activity on the hepatocellular carcinoma cell line HepG2. All of these ITCs induced both apoptotic and necrotic cell death. FTIR analysis indicated that the ITCs caused changes in cellular components comparable to vinblastine. Despite no observable effect on DNA, the ITCs all induced generation of intracellular reactive oxygen species (ROS) and suppressed microtubule polymerization. The variation in sulfur oxidation states and the presence of an aromatic ring on the ITC side chain affected microtubule depolymerization and intracellular ROS generation, leading to apoptotic and necrotic cancer cell death. Knowing the influences of structural variations of the ITC side chain would be useful for selecting the more potent ITCs (i.e., erysolin) for the design and development of effective chemopreventive agents.


Assuntos
Isotiocianatos/química , Isotiocianatos/farmacologia , Microtúbulos/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Bovinos , Células Hep G2 , Humanos , Microtúbulos/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA