RESUMO
We perform a systematic study of the α-particle excitation from its ground state 0_{1}^{+} to the 0_{2}^{+} resonance. The so-called monopole transition form factor is investigated via an electron scattering experiment in a broad Q^{2} range (from 0.5 to 5.0 fm^{-2}). The precision of the new data dramatically supersedes that of older sets of data, each covering only a portion of the Q^{2} range. The new data allow the determination of two coefficients in a low-momentum expansion, leading to a new puzzle. By confronting experiment to state-of-the-art theoretical calculations, we observe that modern nuclear forces, including those derived within chiral effective field theory that are well tested on a variety of observables, fail to reproduce the excitation of the α particle.
RESUMO
Virtual Compton scattering on the proton has been investigated at three yet unexplored values of the four-momentum transfer Q^{2}: 0.10, 0.20, and 0.45 GeV^{2}, at the Mainz Microtron. Fits performed using either the low-energy theorem or dispersion relations allowed the extraction of the structure functions P_{LL}-P_{TT}/ε and P_{LT}, as well as the electric and magnetic generalized polarizabilities α_{E1}(Q^{2}) and ß_{M1}(Q^{2}). These new results show a smooth and rapid falloff of α_{E1}(Q^{2}), in contrast to previous measurements at Q^{2}=0.33 GeV^{2}, and provide for the first time a precise mapping of ß_{M1}(Q^{2}) in the low-Q^{2} region.
RESUMO
We report on the first Q^{2}-dependent measurement of the beam-normal single spin asymmetry A_{n} in the elastic scattering of 570 MeV vertically polarized electrons off ^{12}C. We cover the Q^{2} range between 0.02 and 0.05 GeV^{2}/c^{2} and determine A_{n} at four different Q^{2} values. The experimental results are compared to a theoretical calculation that relates A_{n} to the imaginary part of the two-photon exchange amplitude. The result emphasizes that the Q^{2} behavior of A_{n} given by the ratio of the Compton to charge form factors cannot be treated independently of the target nucleus.
RESUMO
The helicity-dependent recoil proton polarizations P_{x}^{'} and P_{z}^{'} as well as the helicity-independent component P_{y} have been measured in the p(e[over â],e^{'}p[over â])π^{0} reaction at four-momentum transfer Q^{2}≃0.1 GeV^{2}, center-of-mass proton emission angle θ_{p}^{*}≃90°, and invariant mass W≃1440 MeV. This first precise measurement of double-polarization observables in the energy domain of the Roper resonance P_{11}(1440) by exploiting recoil polarimetry has allowed for the extraction of its scalar electroexcitation amplitude at an unprecedentedly low value of Q^{2}, establishing a powerful instrument for probing the interplay of quark and meson degrees of freedom in the nucleon.
RESUMO
At the Mainz Microtron MAMI, the first high-resolution pion spectroscopy from decays of strange systems was performed by electron scattering off a (9)Be target in order to study the Λ binding energy of light hypernuclei. Positively charged kaons were detected by a short-orbit spectrometer with a broad momentum acceptance at 0° forward angles with respect to the beam, efficiently tagging the production of strangeness in the target nucleus. Coincidentally, negatively charged decay pions were detected by two independent high-resolution spectrometers. About 10(3) pionic weak decays of hyperfragments and hyperons were observed. The pion momentum distribution shows a monochromatic peak at pπ≈133 MeV/c, corresponding to the unique signature for the two-body decay of hyperhydrogen Λ(4)Hâ(4)He+π(-), stopped inside the target. Its Λ binding energy was determined to be BΛ=2.12±0.01 (stat)±0.09 (syst)MeV with respect to the (3)H+Λ mass.
RESUMO
A massive, but light, Abelian U(1) gauge boson is a well-motivated possible signature of physics beyond the standard model of particle physics. In this Letter, the search for the signal of such a U(1) gauge boson in electron-positron pair production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron is described. Exclusion limits in the mass range of 40 MeV/c^{2} to 300 MeV/c^{2}, with a sensitivity in the squared mixing parameter of as little as ε^{2}=8×10^{-7} are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge boson.
RESUMO
A measurement of beam helicity asymmetries in the reaction 3He[over â](e[over â],e'n)pp is performed at the Mainz Microtron in quasielastic kinematics to determine the electric to magnetic form factor ratio of the neutron GEn/GMn at a four-momentum transfer Q2=1.58 GeV2. Longitudinally polarized electrons are scattered on a highly polarized 3He gas target. The scattered electrons are detected with a high-resolution magnetic spectrometer, and the ejected neutrons are detected with a dedicated neutron detector composed of scintillator bars. To reduce systematic errors, data are taken for four different target polarization orientations allowing the determination of GEn/GMn from a double ratio. We find µnGEn/GMn=0.250±0.058(stat)±0.017(syst).
RESUMO
A new exclusion limit for the electromagnetic production of a light U(1) gauge boson γ' decaying to e + e- was determined by the A1 Collaboration at the Mainz Microtron. Such light gauge bosons appear in several extensions of the standard model and are also discussed as candidates for the interaction of dark matter with standard model matter. In electron scattering from a heavy nucleus, the existing limits for a narrow state coupling to e + e- were reduced by nearly an order of magnitude in the range of the lepton pair mass of 210 MeV/c2}
RESUMO
New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q² = 1 (GeV/c)² with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be
RESUMO
The beam-recoil double polarization P(x')(h) and P(z')(h) and the recoil polarization P(y') were measured for the first time for the p(e,e'p)eta reaction at a four-momentum transfer of Q(2) = 0.1 GeV(2)/c(2) and a center of mass production angle of theta = 120 degrees at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV
RESUMO
Kinetic energies of light fragments ( A=10) from the decay of target spectators in 197Au+197Au collisions at 1000 MeV per nucleon have been measured with high-resolution telescopes at backward angles. Except for protons and apart from the observed evaporation components, the kinetic-energy spectra exhibit slope temperatures of about 17 MeV, independent of the particle species, but not corresponding to the thermal or chemical degrees of freedom at breakup. It is suggested that these slope temperatures may reflect the intrinsic Fermi motion and thus the bulk density of the spectator system at the instant of becoming unstable.