Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 13(18): e4826, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37753468

RESUMO

Administration of substances into neonatal mice is required for early treatment with pre-clinical therapeutics, delivery of recombination-inducing substances, and dosing with viruses or toxins, amongst other things. Several injection routes into mouse pups are possible, including intravenous and intracerebroventricular, each with their own advantages and limitations. Here, we describe a simple and rapid protocol for the intraperitoneal injection of neonatal mice for systemic dosing. By detaching a 30-gauge needle from its plastic hub and inserting it into polyethylene tubing attached to a Hamilton syringe, small volumes (1-10 µL) can be accurately injected into the peritoneal cavity of pups aged 1-5 days old. The procedure can be completed within a few minutes, is generally safe and well tolerated by both pups and parents, and can be used in combination with alternative administration routes. Key features • This protocol provides a simple description to rapidly and efficiently inject mouse pups aged 1-5 days for systemic dosing. • Allows treatment of neonatal mice with substances such as viruses and compounds for research across disciplines.

2.
Sci Transl Med ; 15(694): eadg3904, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134150

RESUMO

Dystonia, a neurological disorder defined by abnormal postures and disorganized movements, is considered to be a neural circuit disorder with dysfunction arising within and between multiple brain regions. Given that spinal neural circuits constitute the final pathway for motor control, we sought to determine their contribution to this movement disorder. Focusing on the most common inherited form of dystonia in humans, DYT1-TOR1A, we generated a conditional knockout of the torsin family 1 member A (Tor1a) gene in the mouse spinal cord and dorsal root ganglia (DRG). We found that these mice recapitulated the phenotype of the human condition, developing early-onset generalized torsional dystonia. Motor signs emerged early in the mouse hindlimbs before spreading caudo-rostrally to affect the pelvis, trunk, and forelimbs throughout postnatal maturation. Physiologically, these mice bore the hallmark features of dystonia, including spontaneous contractions at rest and excessive and disorganized contractions, including cocontractions of antagonist muscle groups, during voluntary movements. Spontaneous activity, disorganized motor output, and impaired monosynaptic reflexes, all signs of human dystonia, were recorded from isolated mouse spinal cords from these conditional knockout mice. All components of the monosynaptic reflex arc were affected, including motor neurons. Given that confining the Tor1a conditional knockout to DRG did not lead to early-onset dystonia, we conclude that the pathophysiological substrate of this mouse model of dystonia lies in spinal neural circuits. Together, these data provide new insights into our current understanding of dystonia pathophysiology.


Assuntos
Distonia Muscular Deformante , Distonia , Humanos , Camundongos , Animais , Distonia/genética , Distonia/metabolismo , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/metabolismo , Camundongos Knockout , Encéfalo/metabolismo , Chaperonas Moleculares/metabolismo
3.
Elife ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512397

RESUMO

Elaborate behaviours are produced by tightly controlled flexor-extensor motor neuron activation patterns. Motor neurons are regulated by a network of interneurons within the spinal cord, but the computational processes involved in motor control are not fully understood. The neuroanatomical arrangement of motor and premotor neurons into topographic patterns related to their controlled muscles is thought to facilitate how information is processed by spinal circuits. Rabies retrograde monosynaptic tracing has been used to label premotor interneurons innervating specific motor neuron pools, with previous studies reporting topographic mediolateral positional biases in flexor and extensor premotor interneurons. To more precisely define how premotor interneurons contacting specific motor pools are organized, we used multiple complementary viral-tracing approaches in mice to minimize systematic biases associated with each method. Contrary to expectations, we found that premotor interneurons contacting motor pools controlling flexion and extension of the ankle are highly intermingled rather than segregated into specific domains like motor neurons. Thus, premotor spinal neurons controlling different muscles process motor instructions in the absence of clear spatial patterns among the flexor-extensor circuit components.


The spinal cord contains circuits of nerve cells that control how the body moves. Within these networks are interneurons that project to motor neurons, which innervate different types of muscle to contract: flexors (such as the biceps), which bend, or 'flex', the body's joints, and extensors (such as the triceps), which lead to joint extension. These motor signals must be carefully coordinated to allow precise and stable control of the body's movements. Previous studies suggest that where interneurons are placed in the spinal cord depends on whether they activate the motor neurons responsible for flexion or extension. To test if these findings were reproducible, Ronzano, Skarlatou, Barriga, Bannatyne, Bhumbra et al. studied interneurons which flex and extend the ankle joint in mice. In collaboration with several laboratories, the team used a combination of techniques to trace how interneurons and motor neurons were connected in the mouse spinal cord. This revealed that regardless of the method used or the laboratory in which the experiments were performed, the distribution of interneurons associated with flexion and extension overlapped one another. This finding contradicts previously published results and suggests that interneurons in the spinal cord are not segregated based on their outputs. Instead, they may be positioned based on the signals they receive, similar to motor neurons. Understanding where interneurons in the spinal cord are placed will provide new insights on how movement is controlled and how it is impacted by injuries and disease. In the future, this knowledge could benefit work on how neural circuits in the spinal cord are formed and how they can be regenerated.


Assuntos
Interneurônios , Músculos , Medula Espinal , Animais , Camundongos , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Raiva , Medula Espinal/fisiologia
4.
Elife ; 102021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854375

RESUMO

Long ascending propriospinal neurons (LAPNs) are a subpopulation of spinal cord interneurons that directly connect the lumbar and cervical enlargements. Previously we showed, in uninjured animals, that conditionally silencing LAPNs disrupted left-right coordination of the hindlimbs and forelimbs in a context-dependent manner, demonstrating that LAPNs secure alternation of the fore- and hindlimb pairs during overground stepping. Given the ventrolateral location of LAPN axons in the spinal cord white matter, many likely remain intact following incomplete, contusive, thoracic spinal cord injury (SCI), suggesting a potential role in the recovery of stepping. Thus, we hypothesized that silencing LAPNs after SCI would disrupt recovered locomotion. Instead, we found that silencing spared LAPNs post-SCI improved locomotor function, including paw placement order and timing, and a decrease in the number of dorsal steps. Silencing also restored left-right hindlimb coordination and normalized spatiotemporal features of gait such as stance and swing time. However, hindlimb-forelimb coordination was not restored. These data indicate that the temporal information carried between the spinal enlargements by the spared LAPNs post-SCI is detrimental to recovered hindlimb locomotor function. These findings are an illustration of a post-SCI neuroanatomical-functional paradox and have implications for the development of neuronal- and axonal-protective therapeutic strategies and the clinical study/implementation of neuromodulation strategies.


Assuntos
Extremidades/fisiopatologia , Interneurônios/fisiologia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Animais , Modelos Animais de Doenças , Extremidades/inervação , Feminino , Marcha , Ratos Sprague-Dawley
5.
Elife ; 92020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32902379

RESUMO

Within the cervical and lumbar spinal enlargements, central pattern generator (CPG) circuitry produces the rhythmic output necessary for limb coordination during locomotion. Long propriospinal neurons that inter-connect these CPGs are thought to secure hindlimb-forelimb coordination, ensuring that diagonal limb pairs move synchronously while the ipsilateral limb pairs move out-of-phase during stepping. Here, we show that silencing long ascending propriospinal neurons (LAPNs) that inter-connect the lumbar and cervical CPGs disrupts left-right limb coupling of each limb pair in the adult rat during overground locomotion on a high-friction surface. These perturbations occurred independent of the locomotor rhythm, intralimb coordination, and speed-dependent (or any other) principal features of locomotion. Strikingly, the functional consequences of silencing LAPNs are highly context-dependent; the phenotype was not expressed during swimming, treadmill stepping, exploratory locomotion, or walking on an uncoated, slick surface. These data reveal surprising flexibility and context-dependence in the control of interlimb coordination during locomotion.


Assuntos
Geradores de Padrão Central , Extremidades , Interneurônios , Propriocepção/fisiologia , Animais , Geradores de Padrão Central/citologia , Geradores de Padrão Central/fisiologia , Interneurônios Comissurais/citologia , Interneurônios Comissurais/fisiologia , Extremidades/inervação , Extremidades/fisiologia , Feminino , Interneurônios/citologia , Interneurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/fisiologia
6.
Nat Commun ; 8(1): 1963, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213073

RESUMO

Neural circuitry in the lumbar spinal cord governs two principal features of locomotion, rhythm and pattern, which reflect intra- and interlimb movement. These features are functionally organized into a hierarchy that precisely controls stepping in a stereotypic, speed-dependent fashion. Here, we show that a specific component of the locomotor pattern can be independently manipulated. Silencing spinal L2 interneurons that project to L5 selectively disrupts hindlimb alternation allowing a continuum of walking to hopping to emerge from the otherwise intact network. This perturbation, which is independent of speed and occurs spontaneously with each step, does not disrupt multi-joint movements or forelimb alternation, nor does it translate to a non-weight-bearing locomotor activity. Both the underlying rhythm and the usual relationship between speed and spatiotemporal characteristics of stepping persist. These data illustrate that hindlimb alternation can be manipulated independently from other core features of stepping, revealing a striking freedom in an otherwise precisely controlled system.


Assuntos
Membro Posterior/inervação , Membro Posterior/fisiologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Animais , Fenômenos Biomecânicos , Contagem de Células , Eletromiografia , Feminino , Membro Anterior/inervação , Membro Anterior/fisiologia , Locomoção/fisiologia , Modelos Animais , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Análise Espaço-Temporal , Traumatismos da Medula Espinal/fisiopatologia , Sinapses/fisiologia , Caminhada/fisiologia , Velocidade de Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA