Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 2): 130372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395275

RESUMO

The present study reports the synthesis of micellar conjugates, wherein curcumin (Cur), a bioactive compound with poor bioavailability, was covalently bonded to a bacterial exopolysaccharide (EPS). These conjugates were synthesized by utilizing succinic acid that linked Cur to the pyranosyl moiety of the EPS. The Cur-EPS conjugates appeared as spherical micelles in aqueous solution and were found to have an average hydrodynamic diameter of 254 ± 2.7 nm. The micellar conjugates showed superior stability than Cur as evident from their negative surface charge (-27 ± 1.8 mV) and low polydispersity index (PDI) (0.33 ± 0.04). The in vitro studies on release kinetics helped elucidate the pH-responsive characteristics of the Cur-EPS conjugate, as 87.50 ± 1.45 % of Cur was released at an acidic pH of 5.6, in contrast to 30.15 ± 2.61 % at systemic pH of 7.4 at 150 h. The conjugates were hemocompatible and exhibited cytotoxic effect against the osteosarcoma cell line (MG-63) after 48 h treatment. They also demonstrated superior antibacterial, antibiofilm, and antioxidant activities in comparison to free Cur. Therefore, the Cur-EPS conjugates have potential pharmaceutical applications as therapeutic biomaterial that can be applied as a drug delivery system.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Curcumina , Humanos , Curcumina/química , Micelas , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Neoplasias Ósseas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química
2.
Front Bioeng Biotechnol ; 11: 1213932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701494

RESUMO

Targeted delivery of site-specific therapeutic agents is an effective strategy for osteoarthritis treatment. The lack of blood vessels in cartilage makes it difficult to deliver therapeutic agents like peptides to the defect area. Therefore, nucleus-targeting zwitterionic carbon nano-dots (CDs) have immense potential as a delivery vehicle for effective peptide delivery to the cytoplasm as well as nucleus. In the present study, nucleus-targeting zwitterionic CDs have been synthesized as delivery vehicle for peptides while also working as nano-agents towards optical monitoring of cartilage healing. The functional groups of zwitterion CDs were introduced by a single-step microwave assisted oxidation procedure followed by COL II peptide conjugation derived from Capra auricular cartilage through NHS/EDC coupling. The peptide-conjugated CDs (PCDs) allows cytoplasmic uptake within a short period of time (∼30 m) followed by translocation to nucleus after ∼24 h. Moreover, multicolor fluorescence of PCDs improves (blue, green, and read channel) its sensitivity as an optical code providing a compelling solution towards enhanced non-invasive tracking system with multifunctional properties. The PCDs-based delivery system developed in this study has exhibited superior ability to induce ex-vivo chondrogenic differentiation of ADMSCs as compared to bare CDs. For assessment of cartilage regeneration potential, pluronic F-127 based PCDs hydrogel was injected to rabbit auricular cartilage defects and potential healing was observed after 60 days. Therefore, the results confirm that PCDs could be an ideal alternate for multimodal therapeutic agents.

3.
Macromol Biosci ; 20(8): e2000180, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32794360

RESUMO

Multicellular tumor spheroid (MCTS) mimics microenvironment for tumor formation and provides predictive insight for in vivo tests. The hanging drop (HD) method of spheroid generation is cost effective, but it is limited by a long time duration for spheroid development and a low rate of formation of larger spheroids. Toward addressing those limitations, thermoresponsive copolymers with poly(N-isopropylacrylamide) (p(NIPA)) backbone are developed, to be used as additives in the MCTS formation via HD method. Upon investigation it is found that in the presence of the polymer, robust and compact spheroids are formed in a short duration of 48 h. Larger spheroids (350-600 µm) can be formed by increasing the number of cells. Spheroids are characterized for their 3D shape and different cellular layers, and drug uptake study is done to prove the efficacy of the spheroids generated in drug screening.


Assuntos
Resinas Acrílicas/química , Esferoides Celulares/citologia , Resinas Acrílicas/síntese química , Contagem de Células , Morte Celular , Linhagem Celular Tumoral , Tamanho Celular , Sobrevivência Celular , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Temperatura
4.
Colloids Surf B Biointerfaces ; 191: 110988, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32276213

RESUMO

Disruption of DNA carriers triggered by intracellular bio-stimulants has been broadly considered as most convenient strategy for efficient DNA delivery. In this direction, we have designed and synthesized pH, redox and ATP responsive cationic cross-linked polymers (CLPs) having disulfide and reversible boronic ester linkages. These CLPs also contain folate groups that are known for their targeting capability towards cancer cells. Biophysical studies showed that these cationic CLPs exhibited more effective DNA condensation in comparison to cationic linear polymers resulting in the formation of nano-sized polyplexes with sufficient positive zeta potentials and good colloidal stability at neutral pH (∼7.4). More interestingly, the polyplexes prepared from these CLPs have the ability to selectively release complexed DNA under conditions similar to those prevalent in cancer cells such as acidic pH, ATP rich surroundings or presence of glutathione, as revealed by ethidium bromide exclusion assay, agarose gel electrophoresis, AFM measurements, etc. Therefore, these cross-linked polymers have high potential of being effective non-viral gene delivery vehicles.


Assuntos
Boro/química , Cátions/química , Reagentes de Ligações Cruzadas/química , DNA/metabolismo , Dissulfetos/química , Ésteres/química , Polímeros/química , DNA/química , Humanos
5.
Chem Commun (Camb) ; 56(9): 1440-1443, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31913368

RESUMO

An efficient Rh(iii)-catalyzed straightforward strategy was developed for the tandem C4 arylamination/annulation of indole derivatives with anthranil to provide indoloquinoline moieties. This method is simple and regioselective with a wide scope and functional group tolerance. Mechanistic studies revealed the important role of the newly installed azacycle in the conversion of O-protected aldoximes to their cyano derivatives. Studies were carried out to explore the promising photophysical properties of the obtained indoloquinoline derivatives.

6.
Langmuir ; 35(45): 14616-14627, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31613101

RESUMO

Cationic polymeric micelles that are capable of co-releasing drugs and DNA into cells have attracted considerable interest as combination chemotherapy in cancer treatment. To this effect, we have presently developed a cationic fluorescent amphiphilic copolymer, poly(N,N'-dimethylaminoethylmethacrylate)-b-(poly(2-(methacryloyl)oxyethyl-2'-hydroxyethyl disulfidecholate)-r-2-(methacryloyloxy)ethyl-1-pyrenebutyrate) [PDMAEMA-b-(PMAODCA-r-PPBA)], having pendent cholate moiety linked through a redox-responsive disulfide bond. The amphiphilic nature of the copolymer facilitated the formation of cationic micellar nanoparticles in aqueous medium. The self-assembly of the copolymer to form micelles and subsequent destabilization of the micelles in the presence of glutathione (GSH) was monitored by the change in the fluorescence characteristic of the attached pyrene resulting from alteration in the hydrophobicity of its neighborhood. These micellar nanoparticles were subsequently utilized in encapsulating hydrophobic anticancer drug, doxorubicin (DOX), in the core of the micelles, whereas the cationic shell of the micelles was used for complexation with oppositely charged DNA to form micelleplexes. Gel retardation assays, ethidium bromide (EB) exclusion assay, and DLS and AFM studies confirmed the successful binding of the cationic micelles with DNA. The binding capability of the micelles was higher than corresponding cationic linear PDMAEMA. The kinetics of the simultaneous release of encapsulated DOX and complexed DNA in the presence of glutathione was thoroughly studied using various techniques. All the experiments showed fast and efficient release of DOX and DNA from DOX-loaded micelleplexes. The study implies that these redox-responsive cationic micelles may open up new opportunities toward co-delivery of DNA and anticancer drugs in combinatorial therapy.


Assuntos
Antineoplásicos/química , DNA de Neoplasias/química , Doxorrubicina/química , Corantes Fluorescentes/química , Polímeros/química , Tensoativos/química , Cátions/síntese química , Cátions/química , Liberação Controlada de Fármacos , Corantes Fluorescentes/síntese química , Interações Hidrofóbicas e Hidrofílicas , Micelas , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície , Tensoativos/síntese química
7.
J Org Chem ; 82(7): 3612-3621, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28277659

RESUMO

An efficient, direct C6-arylation of 2-pyridones has been successfully accomplished with quinone diazides under Rh(III)-catalyzed redox-neutral conditions. The optimized method is simple, mild, and highly regioselective with a broad substrate scope. The strict regioselectivity is guided by the pyridyl substituent attached to the nitrogen of the pyridone ring. As the directing 2-pyridyl group can easily be removed at any suitable stage after functionalization, the method provides a facile access to complex heteroarylated phenol moieties by wide-ranging heterocyclic scaffolds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA