Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proteins ; 91(11): 1525-1534, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37462340

RESUMO

Fatty acid binding proteins (FABPs) are responsible for the long-chain fatty acids (FAs) transport inside the cell. However, despite the years, since their structure is known and the many studies published, there is no definitive answer about the stages of the lipid entry-exit mechanism. Their structure forms a ß -barrel of 10 anti-parallel strands with a cap in a helix-turn-helix motif, and there is some consensus on the role of the so-called portal region, involving the second α -helix from the cap ( α 2), ß C- ß D, and ß E- ß F turns in FAs exchange. To test the idea of a lid that opens, we performed a soaking experiment on an h-FABP crystal in which the cap is part of the packing contacts, and its movement is strongly restricted. Even in these conditions, we observed the replacement of palmitic acid by 2-Bromohexadecanoic acid (Br-palmitic acid). Our MD simulations reveal a two-step lipid entry process: (i) The travel of the lipid head through the cavity in the order of tens of nanoseconds, and (ii) The accommodation of its hydrophobic tail in hundreds to thousands of nanoseconds. We observed this even in the cases in which the FAs enter the cavity by their tail. During this process, the FAs do not follow a single trajectory, but multiple ones through which they get into the protein cavity. Thanks to the complementary views between experiment and simulation, we can give an approach to a mechanistic view of the exchange process.


Assuntos
Proteínas de Ligação a Ácido Graxo , Simulação de Dinâmica Molecular , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Raios X , Conformação Proteica , Ácidos Palmíticos/metabolismo , Lipídeos , Ácidos Graxos
2.
J Virol ; 96(10): e0187521, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35475668

RESUMO

Persistent infection with some mucosal α-genus human papillomaviruses (HPVs; the most prevalent one being HPV16) can induce cervical carcinoma, anogenital cancers, and a subset of head and neck squamous cell carcinoma (HNSCC). Cutaneous ß-genus HPVs (such as HPV5 and HPV8) associate with skin lesions that can progress into squamous cell carcinoma with sun exposure in Epidermodysplasia verruciformis patients and immunosuppressed patients. Here, we analyzed mechanisms used by E6 proteins from the α- and ß-genus to inhibit the interferon-ß (IFNB1) response. HPV16 E6 mediates this effect by a strong direct interaction with interferon regulatory factor 3 (IRF3). The binding site of E6 was localized within a flexible linker between the DNA-binding domain and the IRF-activation domain of IRF3 containing an LxxLL motif. The crystallographic structure of the complex between HPV16 E6 and the LxxLL motif of IRF3 was solved and compared with the structure of HPV16 E6 interacting with the LxxLL motif of the ubiquitin ligase E6AP. In contrast, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3-binding domain (IBiD) of the CREB-binding protein (CBP), a key transcriptional coactivator in IRF3-mediated IFN-ß expression. IMPORTANCE Persistent HPV infections can be associated with the development of several cancers. The ability to persist depends on the ability of the virus to escape the host immune system. The type I interferon (IFN) system is the first-line antiviral defense strategy. HPVs carry early proteins that can block the activation of IFN-I. Among mucosal α-genus HPV types, the HPV16 E6 protein has a remarkable property to strongly interact with the transcription factor IRF3. Instead, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3 cofactor CBP. These results highlight the versatility of E6 proteins to interact with different cellular targets. The interaction between the HPV16 E6 protein and IRF3 might contribute to the higher prevalence of HPV16 than that of other high-risk mucosal HPV types in HPV-associated cancers.


Assuntos
Fator Regulador 3 de Interferon , Interferon beta , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Proteínas Repressoras , Papillomavirus Humano 16/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Mucosa/virologia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Pele/virologia
3.
J Med Chem ; 62(17): 8164-8177, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408339

RESUMO

Recent efforts to identify new highly potent arginase inhibitors have resulted in the discovery of a novel family of (3R,4S)-3-amino-4-(3-boronopropyl)pyrrolidine-3-carboxylic acid analogues with up to a 1000-fold increase in potency relative to the current standards, 2-amino-6-boronohexanoic acid (ABH) and N-hydroxy-nor-l-arginine (nor-NOHA). The lead candidate, with an N-2-amino-3-phenylpropyl substituent (NED-3238), example 43, inhibits arginase I and II with IC50 values of 1.3 and 8.1 nM, respectively. Herein, we report the design, synthesis, and structure-activity relationships for this novel series of inhibitors, along with X-ray crystallographic data for selected examples bound to human arginase II.


Assuntos
Arginase/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Pirrolidinas/farmacologia , Arginase/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Pirrolidinas/síntese química , Pirrolidinas/química , Relação Estrutura-Atividade
4.
Angew Chem Int Ed Engl ; 57(27): 8002-8006, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29722924

RESUMO

Multivalent design of glycosidase inhibitors is a promising strategy for the treatment of diseases involving enzymatic hydrolysis of glycosidic bonds in carbohydrates. An essential prerequisite for successful applications is the atomic-level understanding of how outstanding binding enhancement occurs with multivalent inhibitors. Herein we report the first high-resolution crystal structures of the Jack bean α-mannosidase (JBα-man) in apo and inhibited states. The three-dimensional structure of JBα-man in complex with the multimeric cyclopeptoid-based inhibitor displaying the largest binding enhancements reported so far provides decisive insight into the molecular mechanisms underlying multivalent effects in glycosidase inhibition.


Assuntos
alfa-Manosidase/metabolismo , Sítios de Ligação , Canavalia/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Imino Açúcares/química , Imino Açúcares/metabolismo , Estrutura Terciária de Proteína , Zinco/química , Zinco/metabolismo , alfa-Manosidase/antagonistas & inibidores
5.
Eur J Med Chem ; 152: 160-174, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29705708

RESUMO

Human aldose reductase (AKR1B1, AR) is a key enzyme of the polyol pathway, catalyzing the reduction of glucose to sorbitol at high glucose concentrations, as those found in diabetic condition. Indeed, AKR1B1 overexpression is related to diabetes secondary complications and, in some cases, with cancer. For many years, research has been focused on finding new AKR1B1 inhibitors (ARIs) to overcome these diseases. Despite the efforts, most of the new drug candidates failed because of their poor pharmacokinetic properties and/or unacceptable side effects. Here we report the synthesis of a series of 1-oxopyrimido[4,5-c]quinoline-2-acetic acid derivatives as novel ARIs. IC50 assays and X-ray crystallographic studies proved that these compounds are promising hits for further drug development, with high potency and selectivity against AKR1B1. Based on the determined X-ray structures with hit-to-lead compounds, we designed and synthesized a second series that yielded lead compound 68 (Kiappvs. AKR1B1 = 73 nM). These compounds are related to the previously reported 2-aminopyrimido[4,5-c]quinolin-1(2H)-ones, which exhibit antimitotic activity. Regardless of their similarity, the 2-amino compounds are unable to inhibit AKR1B1 while the 2-acetic acid derivatives are not cytotoxic against fibrosarcoma HT-1080 cells. Thus, the replacement of the amino group by an acetic acid moiety changes their biological activity, improving their potency as ARIs.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Quinolinas/farmacologia , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
6.
Emerg Top Life Sci ; 2(1): 39-55, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33525781

RESUMO

Neutron diffraction techniques permit direct determination of the hydrogen (H) and deuterium (D) positions in crystal structures of biological macromolecules at resolutions of ∼1.5 and 2.5 Å, respectively. In addition, neutron diffraction data can be collected from a single crystal at room temperature without radiation damage issues. By locating the positions of H/D-atoms, protonation states and water molecule orientations can be determined, leading to a more complete understanding of many biological processes and drug-binding. In the last ca. 5 years, new beamlines have come online at reactor neutron sources, such as BIODIFF at Heinz Maier-Leibnitz Zentrum and IMAGINE at Oak Ridge National Laboratory (ORNL), and at spallation neutron sources, such as MaNDi at ORNL and iBIX at the Japan Proton Accelerator Research Complex. In addition, significant improvements have been made to existing beamlines, such as LADI-III at the Institut Laue-Langevin. The new and improved instrumentations are allowing sub-mm3 crystals to be regularly used for data collection and permitting the study of larger systems (unit-cell edges >100 Å). Owing to this increase in capacity and capability, many more studies have been performed and for a wider range of macromolecules, including enzymes, signalling proteins, transport proteins, sugar-binding proteins, fluorescent proteins, hormones and oligonucleotides; of the 126 structures deposited in the Protein Data Bank, more than half have been released since 2013 (65/126, 52%). Although the overall number is still relatively small, there are a growing number of examples for which neutron macromolecular crystallography has provided the answers to questions that otherwise remained elusive.

7.
J Med Chem ; 61(3): 695-710, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29283260

RESUMO

This article highlights our work toward the identification of a potent, selective, and efficacious acidic mammalian chitinase (AMCase) inhibitor. Rational design, guided by X-ray analysis of several inhibitors bound to human chitotriosidase (hCHIT1), led to the identification of compound 7f as a highly potent AMCase inhibitor (IC50 values of 14 and 19 nM against human and mouse enzyme, respectively) and selective (>150× against mCHIT1) with very good PK properties. This compound dosed once daily at 30 mg/kg po showed significant anti-inflammatory efficacy in HDM-induced allergic airway inflammation in mice, reducing inflammatory cell influx in the BALF and total IgE concentration in plasma, which correlated with decrease of chitinolytic activity. Therapeutic efficacy of compound 7f in the clinically relevant aeroallergen-induced acute asthma model in mice provides a rationale for developing AMCase inhibitor for the treatment of asthma.


Assuntos
Asma/tratamento farmacológico , Asma/enzimologia , Quitinases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Terapia de Alvo Molecular , Animais , Células CHO , Quitinases/química , Cricetulus , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica
8.
Sci Rep ; 7: 42343, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181556

RESUMO

Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.


Assuntos
Escherichia coli/metabolismo , Mutação/genética , Tiorredoxinas/química , Tiorredoxinas/genética , Alquilação , Cristalografia por Raios X , Cisteína/genética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Concentração Osmolar , Oxirredução , Conformação Proteica
9.
Chem Biol Interact ; 276: 174-181, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28161411

RESUMO

UVI2008, a retinoic acid receptor (RAR) ß/γ agonist originated from C3 bromine addition to the parent RAR pan-agonist 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid (TTNPB), is also a selective inhibitor of aldo-keto reductase family member 1B10 (AKR1B10). Thus, it might become a lead drug for the design of compounds targeting both activities, as an AKR1B10 inhibitor and RAR agonist, which could constitute a novel therapeutic approach against cancer and skin-related diseases. Herein, the X-ray structure of the methylated Lys125Arg/Val301Leu AKR1B10 (i.e. AKME2MU) holoenzyme in complex with UVI2008 was determined at 1.5 Å resolution, providing an explanation for UVI2008 selectivity against AKR1B10 (IC50 = 6.1 µM) over the closely related aldose reductase (AR, IC50 = 70 µM). The carboxylic acid group of UVI2008 is located in the anion-binding pocket, at hydrogen-bond distance of catalytically important residues Tyr49 and His111. The inhibitor bromine atom can only fit in the wider active site of AKR1B10, mainly because of the native Trp112 side-chain orientation, not possible in AR. In AKR1B10, Trp112 native conformation, and thus UVI2008 binding, is facilitated through interaction with Gln114. IC50 analysis of the corresponding Thr113Gln mutant in AR confirmed this hypothesis. The elucidation of the binding mode of UVI2008 to AKR1B10, along with the previous studies on the retinoid specificity of AKR1B10 and on the stilbene retinoid scaffold conforming UVI2008, could indeed be used to foster the drug design of bifunctional antiproliferative compounds.


Assuntos
Aldeído Redutase/metabolismo , Benzoatos/química , Clorobenzoatos/metabolismo , Inibidores Enzimáticos/metabolismo , Retinoides/química , Tetra-Hidronaftalenos/metabolismo , Aldeído Redutase/antagonistas & inibidores , Aldo-Ceto Redutases , Benzoatos/metabolismo , Sítios de Ligação , Domínio Catalítico , Clorobenzoatos/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Halogenação , Simulação de Acoplamento Molecular , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/metabolismo , Retinoides/metabolismo , Relação Estrutura-Atividade , Tetra-Hidronaftalenos/química
10.
ACS Chem Biol ; 11(10): 2693-2705, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27359042

RESUMO

Human enzyme aldo-keto reductase family member 1B10 (AKR1B10) has evolved as a tumor marker and promising antineoplastic target. It shares high structural similarity with the diabetes target enzyme aldose reductase (AR). Starting from the potent AR inhibitor IDD388, we have synthesized a series of derivatives bearing the same halophenoxyacetic acid moiety with an increasing number of bromine (Br) atoms on its aryl moiety. Next, by means of IC50 measurements, X-ray crystallography, WaterMap analysis, and advanced binding free energy calculations with a quantum-mechanical (QM) approach, we have studied their structure-activity relationship (SAR) against both enzymes. The introduction of Br substituents decreases AR inhibition potency but improves it in the case of AKR1B10. Indeed, the Br atoms in ortho position may impede these drugs to fit into the AR prototypical specificity pocket. For AKR1B10, the smaller aryl moieties of MK181 and IDD388 can bind into the external loop A subpocket. Instead, the bulkier MK184, MK319, and MK204 open an inner specificity pocket in AKR1B10 characterized by a π-π stacking interaction of their aryl moieties and Trp112 side chain in the native conformation (not possible in AR). Among the three compounds, only MK204 can make a strong halogen bond with the protein (-4.4 kcal/mol, using QM calculations), while presenting the lowest desolvation cost among all the series, translated into the most selective and inhibitory potency AKR1B10 (IC50 = 80 nM). Overall, SAR of these IDD388 polyhalogenated derivatives have unveiled several distinctive AKR1B10 features (shape, flexibility, hydration) that can be exploited to design novel types of AKR1B10 selective drugs.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Halogênios/química , Sondas Moleculares/química , Aldo-Ceto Redutases , Sítios de Ligação , Cristalografia por Raios X , Relação Estrutura-Atividade
11.
PLoS One ; 11(4): e0154190, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27111557

RESUMO

Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted ß-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain.


Assuntos
Quitina/química , Cisteína/química , Hexosaminidases/química , Alérgenos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Domínio Catalítico , Quitina/metabolismo , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Expressão Gênica , Células HEK293 , Hexosaminidases/genética , Hexosaminidases/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Pyroglyphidae/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato
12.
Biochim Biophys Acta ; 1864(6): 655-666, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26969784

RESUMO

Hypoxanthine phosphoribosyl transferase from Trypanosoma cruzi (TcHPRT) is a critical enzyme for the survival of the parasite. This work demonstrates that the full-length form in solution adopts a stable and enzymatically active tetrameric form, exhibiting large inter-subunit surfaces. Although this protein irreversibly aggregates during unfolding, oligomerization is reversible and can be modulated by low concentrations of urea. When the C-terminal region, which is predicted as a disordered stretch, is excised by proteolysis, TcHPRT adopts a dimeric state, suggesting that the C-terminal region acts as a main guide for the quaternary arrangement. These results are in agreement with X-ray crystallographic data presented in this work. On the other hand, the C-terminal region exhibits a modulatory role on the enzyme, as attested by the enhanced activity observed for the dimeric form. Bisphosphonates act as substrate-mimetics, uncovering long-range communications among the active sites. All in all, this work contributes to establish new ways applicable to the design of novel inhibitors that could eventually result in new drugs against parasitic diseases.


Assuntos
Biopolímeros/metabolismo , Hipoxantina Fosforribosiltransferase/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Biopolímeros/química , Dicroísmo Circular , Hipoxantina Fosforribosiltransferase/química , Dados de Sequência Molecular , Proteólise , Espectrofotometria Ultravioleta
13.
Chemistry ; 22(15): 5151-5, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26917097

RESUMO

A series of cyclopeptoid-based iminosugar clusters has been evaluated to finely probe the ligand content-dependent increase in α-mannosidase inhibition. This study led to the largest binding enhancement ever reported for an enzyme inhibitor (up to 4700-fold on a valency-corrected basis), which represents a substantial advance over the multivalent glycosidase inhibitors previously reported. Electron microscopy imaging and analytical data support, for the best multivalent effects, the formation of a strong chelate complex in which two mannosidase molecules are cross-linked by one inhibitor.


Assuntos
Inibidores Enzimáticos/química , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Imino Açúcares/química , Peptídeos Cíclicos/química , alfa-Manosidase/química , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/farmacologia , Imino Açúcares/farmacologia , Ligantes , alfa-Manosidase/farmacologia
14.
Nature ; 529(7587): 541-5, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26789255

RESUMO

The p53 pro-apoptotic tumour suppressor is mutated or functionally altered in most cancers. In epithelial tumours induced by 'high-risk' mucosal human papilloma viruses, including human cervical carcinoma and a growing number of head-and-neck cancers, p53 is degraded by the viral oncoprotein E6 (ref. 2). In this process, E6 binds to a short leucine (L)-rich LxxLL consensus sequence within the cellular ubiquitin ligase E6AP. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 (ref. 4). Neither E6 nor E6AP are separately able to recruit p53 (refs 3, 5), and the precise mode of assembly of E6, E6AP and p53 is unknown. Here we solve the crystal structure of a ternary complex comprising full-length human papilloma virus type 16 (HPV-16) E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumour suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against oncogenesis mediated by human papilloma virus.


Assuntos
Papillomavirus Humano 16/metabolismo , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Proteólise , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Papillomavirus Humano 16/química , Papillomavirus Humano 16/patogenicidade , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Oncogênicas Virais/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética
15.
Proteins ; 84(1): 129-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26573720

RESUMO

A unique zinc domain found in all of the identified members of the lipase family I.5 is surrounded by two conserved tryptophans (W61 and W212). In this study, we investigated the role of these hydrophobic residues in thermostability and thermoactivity of the lipase from Bacillus thermocatenulatus (BTL2) taken as the representative of the family. Circular dichroism spectroscopy revealed that the secondary structure of BTL2 is conserved by the tryptophan mutations (W61A, W212A, and W61A/W212A), and that W61 is located in a more rigid and less solvent exposed region than is W212. Thermal denaturation and optimal activity analyses pointed out that zinc induces thermostability and thermoactivity of BTL2, in which both tryptophans W61 and W212 play contributing roles. Molecular explanations describing the roles of these tryptophans were pursued by X-ray crystallography of the open form of the W61A mutant and molecular dynamics simulations which highlighted a critical function for W212 in zinc binding to the coordination site. This study reflects the potential use of hydrophobic amino acids in vicinity of metal coordination sites in lipase biocatalysts design.


Assuntos
Bacillus/enzimologia , Lipase/química , Triptofano/química , Zinco/química , Bacillus/química , Bacillus/genética , Cristalografia por Raios X , Estabilidade Enzimática , Lipase/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Desnaturação Proteica , Estrutura Secundária de Proteína , Triptofano/genética
16.
ChemMedChem ; 10(12): 1989-2003, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26549844

RESUMO

The human enzymes aldose reductase (AR) and AKR1B10 have been thoroughly explored in terms of their roles in diabetes, inflammatory disorders, and cancer. In this study we identified two new lead compounds, 2-(3-(4-chloro-3-nitrobenzyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetic acid (JF0048, 3) and 2-(2,4-dioxo-3-(2,3,4,5-tetrabromo-6-methoxybenzyl)-3,4-dihydropyrimidin-1(2H)-yl)acetic acid (JF0049, 4), which selectively target these enzymes. Although 3 and 4 share the 3-benzyluracil-1-acetic acid scaffold, they have different substituents in their aryl moieties. Inhibition studies along with thermodynamic and structural characterizations of both enzymes revealed that the chloronitrobenzyl moiety of compound 3 can open the AR specificity pocket but not that of the AKR1B10 cognate. In contrast, the larger atoms at the ortho and/or meta positions of compound 4 prevent the AR specificity pocket from opening due to steric hindrance and provide a tighter fit to the AKR1B10 inhibitor binding pocket, probably enhanced by the displacement of a disordered water molecule trapped in a hydrophobic subpocket, creating an enthalpic signature. Furthermore, this selectivity also occurs in the cell, which enables the development of a more efficient drug design strategy: compound 3 prevents sorbitol accumulation in human retinal ARPE-19 cells, whereas 4 stops proliferation in human lung cancer NCI-H460 cells.


Assuntos
Acetatos/química , Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/química , Uracila/análogos & derivados , Acetatos/metabolismo , Acetatos/farmacologia , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Termodinâmica , Uracila/química
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 7): 1455-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26143917

RESUMO

Chitotriosidase (CHIT1) is a human chitinase belonging to the highly conserved glycosyl hydrolase family 18 (GH18). GH18 enzymes hydrolyze chitin, an N-acetylglucosamine polymer synthesized by lower organisms for structural purposes. Recently, CHIT1 has attracted attention owing to its upregulation in immune-system disorders and as a marker of Gaucher disease. The 39 kDa catalytic domain shows a conserved cluster of three acidic residues, Glu140, Asp138 and Asp136, involved in the hydrolysis reaction. Under an excess concentration of substrate, CHIT1 and other homologues perform an additional activity, transglycosylation. To understand the catalytic mechanism of GH18 chitinases and the dual enzymatic activity, the structure and mechanism of CHIT1 were analyzed in detail. The resolution of the crystals of the catalytic domain was improved from 1.65 Š(PDB entry 1waw) to 0.95-1.10 Šfor the apo and pseudo-apo forms and the complex with chitobiose, allowing the determination of the protonation states within the active site. This information was extended by hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. The results suggest a new mechanism involving changes in the conformation and protonation state of the catalytic triad, as well as a new role for Tyr27, providing new insights into the hydrolysis and transglycosylation activities.


Assuntos
Hexosaminidases/química , Hexosaminidases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Dissacarídeos/metabolismo , Glicosilação , Humanos , Hidrólise , Modelos Moleculares , Teoria Quântica
18.
PLoS One ; 10(7): e0134506, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222439

RESUMO

Human aldo-keto reductase 1B15 (AKR1B15) is a newly discovered enzyme which shares 92% amino acid sequence identity with AKR1B10. While AKR1B10 is a well characterized enzyme with high retinaldehyde reductase activity, involved in the development of several cancer types, the enzymatic activity and physiological role of AKR1B15 are still poorly known. Here, the purified recombinant enzyme has been subjected to substrate specificity characterization, kinetic analysis and inhibitor screening, combined with structural modeling. AKR1B15 is active towards a variety of carbonyl substrates, including retinoids, with lower kcat and Km values than AKR1B10. In contrast to AKR1B10, which strongly prefers all-trans-retinaldehyde, AKR1B15 exhibits superior catalytic efficiency with 9-cis-retinaldehyde, the best substrate found for this enzyme. With ketone and dicarbonyl substrates, AKR1B15 also shows higher catalytic activity than AKR1B10. Several typical AKR inhibitors do not significantly affect AKR1B15 activity. Amino acid substitutions clustered in loops A and C result in a smaller, more hydrophobic and more rigid active site in AKR1B15 compared with the AKR1B10 pocket, consistent with distinct substrate specificity and narrower inhibitor selectivity for AKR1B15.


Assuntos
Oxirredutases Atuantes sobre Doadores de Grupos Aldeído ou Oxo/metabolismo , Retinaldeído/metabolismo , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico/genética , Diterpenos , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Modelos Moleculares , Oxirredutases Atuantes sobre Doadores de Grupos Aldeído ou Oxo/antagonistas & inibidores , Oxirredutases Atuantes sobre Doadores de Grupos Aldeído ou Oxo/genética , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
19.
ACS Chem Biol ; 10(7): 1637-42, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25919404

RESUMO

The effect of halogen-to-hydrogen bond substitution on the binding energetics and biological activity of a human aldose reductase inhibitor has been studied using X-ray crystallography, IC50 measurements, advanced binding free energy calculations, and simulations. The replacement of Br or I atoms by an amine (NH2) group has not induced changes in the original geometry of the complex, which made it possible to study the isolated features of selected noncovalent interactions in a biomolecular complex.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Halogenação , Humanos , Ligação de Hidrogênio , Modelos Moleculares
20.
J Biol Inorg Chem ; 20(4): 653-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25832196

RESUMO

Frataxin is an evolutionary conserved protein that participates in iron metabolism. Deficiency of this small protein in humans causes a severe neurodegenerative disease known as Friedreich's ataxia. A number of studies indicate that frataxin binds iron and regulates Fe-S cluster biosynthesis. Previous structural studies showed that metal binding occurs mainly in a region of high density of negative charge. However, a comprehensive characterization of the binding sites is required to gain further insights into the mechanistic details of frataxin function. In this work, we have solved the X-ray crystal structures of a cold-adapted frataxin from a psychrophilic bacterium in the presence of cobalt or europium ions. We have identified a number of metal-binding sites, mainly solvent exposed, several of which had not been observed in previous studies on mesophilic homologues. No major structural changes were detected upon metal binding, although the structures exhibit significant changes in crystallographic B-factors. The analysis of these B-factors, in combination with crystal packing and RMSD among structures, suggests the existence of localized changes in the internal motions. Based on these results, we propose that bacterial frataxins possess binding sites of moderate affinity for a quick capture and transfer of iron to other proteins and for the regulation of Fe-S cluster biosynthesis, modulating interactions with partner proteins.


Assuntos
Temperatura Baixa , Gammaproteobacteria/química , Proteínas de Ligação ao Ferro/química , Ferro/química , Sequência de Aminoácidos , Sítios de Ligação , Cobalto/química , Cristalografia por Raios X , Európio/química , Hidrodinâmica , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Alinhamento de Sequência , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA