Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biomolecules ; 13(11)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-38002330

RESUMO

Mdx mice with a spontaneous mutation in exon 23 of the Dmd gene represent the most common model to investigate the pathophysiology of Duchenne muscular dystrophy (DMD). The disease, caused by the lack of functional dystrophin, is characterized by irreversible impairment of muscle functions, with the diaphragm affected earlier and more severely than other skeletal muscles. We applied a label-free (LF) method and the more thorough tandem mass tag (TMT)-based method to analyze differentially expressed proteins in the diaphragm of 6-week-old mdx mice. The comparison of both methods revealed 88 commonly changed proteins. A more in-depth analysis of the TMT-based method showed 953 significantly changed proteins, with 867 increased and 86 decreased in dystrophic animals (q-value < 0.05, fold-change threshold: 1.5). Consequently, several dysregulated processes were demonstrated, including the immune response, fibrosis, translation, and programmed cell death. Interestingly, in the dystrophic diaphragm, we found a significant decrease in the expression of enzymes generating hydrogen sulfide (H2S), suggesting that alterations in the metabolism of this gaseous mediator could modulate DMD progression, which could be a potential target for pharmacological intervention.


Assuntos
Diafragma , Distrofia Muscular de Duchenne , Animais , Camundongos , Camundongos Endogâmicos mdx , Diafragma/metabolismo , Proteoma/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Músculo Esquelético/metabolismo , Camundongos Endogâmicos C57BL
2.
Sci Rep ; 13(1): 13434, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596327

RESUMO

Skeletal muscle regeneration relies on the reciprocal interaction between many types of cells. Regenerative capacity may be altered in different disorders. In our study, we investigated whether the deletion of miR-378a (miR-378) affects muscle regeneration. We subjected 6-week-old wild-type (WT) and miR-378 knockout (miR-378-/-) animals to the glycerol-induced muscle injury and performed analyses in various time-points. In miR-378-/- animals, an elevated abundance of muscle satellite cells (mSCs) on day 3 was found. Furthermore, fibro-adipogenic progenitors (FAPs) isolated from the muscle of miR-378-/- mice exhibited enhanced adipogenic potential. At the same time, lack of miR-378 did not affect inflammation, fibrosis, adipose tissue deposition, centrally nucleated fiber count, muscle fiber size, FAP abundance, and muscle contractility at any time point analyzed. To conclude, our study revealed that miR-378 deletion influences the abundance of mSCs and the adipogenic potential of FAPs, but does not affect overall regeneration upon acute, glycerol-induced muscle injury.


Assuntos
Fibromialgia , MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Camundongos , Glicerol , Fibras Musculares Esqueléticas , Regeneração/genética , MicroRNAs/genética
3.
Eur J Pharmacol ; 955: 175928, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37507045

RESUMO

Duchenne muscular dystrophy (DMD) is an incurable disease caused by mutations in the X-linked DMD gene that encodes a structural muscle protein, dystrophin. This, in turn, leads to progressive degeneration of the skeletal muscles and the heart. Hydrogen sulfide (H2S), the pleiotropic agent with antioxidant, anti-inflammatory, and pro-angiogenic activities, could be considered a promising therapeutic factor for DMD. In this work, we studied the effect of daily intraperitoneal administration of the H2S donor, sodium hydrosulfide (NaHS, 100 µmol/kg/day for 5 weeks) on skeletal muscle (gastrocnemius, diaphragm and tibialis anterior) pathology in dystrophin-deficient mdx mice, characterized by decreased expression of H2S-generating enzymes. NaHS reduced the level of muscle damage markers in plasma (creatine kinase, lactate dehydrogenase and osteopontin). It lowered oxidative stress by affecting the GSH/GSSG ratio, up-regulating the level of cytoprotective heme oxygenase-1 (HO-1) and down-regulating the NF-κB pathway. In the gastrocnemius muscle, it also increased angiogenic vascular endothelial growth factor (Vegf) and its receptor (Kdr) expression, accompanied by the elevated number of α-SMA/CD31/lectin-positive blood vessels. The expression of fibrotic regulators, like Tgfß, Col1a1 and Fn1 was decreased by NaHS in the tibialis anterior, while the level of autophagy markers (AMPKα signalling and Atg genes), was mostly affected in the gastrocnemius. Histological and molecular analysis showed no effect of H2S donor on regeneration and the muscle fiber type composition. Overall, the H2S donor modified the gene expression and protein level of molecules associated with the pathophysiology of DMD, contributing to the regulation of oxidative stress, inflammation, autophagy, and angiogenesis.

4.
Postepy Biochem ; 68(2): 109-122, 2022 06 30.
Artigo em Polonês | MEDLINE | ID: mdl-35792643

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease affecting approximately 1 in 5,000 born boys. It is caused by mutations in the DMD gene encoding dystrophin, which protects muscle fibers upon contraction. Its absence leads to muscle weakening and premature death mostly due to cardio-respiratory failure. Many experimental therapies have been developed to restore functional dystrophin or counteract processes contributing to disease progression. Nonetheless, DMD remains an incurable disease, and glucocorticoids, exerting many side effects, still serve as the "gold standard" of treatment. Hence, there is a need to develop innovative therapeutic options that will at least alleviate the symptoms of DMD. Among them, targeting specific microRNAs (miRs), e.g. miR-378a, restoring normal angiogenesis and the use of cytoprotective factors such as heme oxygenase-1 (HO-1) or hydrogen sulfide (H2S) might be of special interest. In this review, we describe both the pathology of the disease and the aforementioned new therapeutic options in DMD.


Assuntos
MicroRNAs , Distrofia Muscular de Duchenne , Progressão da Doença , Distrofina/genética , Humanos , Masculino , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia
5.
Sci Rep ; 12(1): 3945, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273230

RESUMO

Although Duchenne muscular dystrophy (DMD) primarily affects muscle tissues, the alterations to systemic metabolism manifested in DMD patients contribute to the severe phenotype of this fatal disorder. We propose that microRNA-378a (miR-378) alters carbohydrate and lipid metabolism in dystrophic mdx mice. In our study, we utilized double knockout animals which lacked both dystrophin and miR-378 (mdx/miR-378-/-). RNA sequencing of the liver identified 561 and 194 differentially expressed genes that distinguished mdx versus wild-type (WT) and mdx/miR-378-/- versus mdx counterparts, respectively. Bioinformatics analysis predicted, among others, carbohydrate metabolism disorder in dystrophic mice, as functionally proven by impaired glucose tolerance and insulin sensitivity. The lack of miR-378 in mdx animals mitigated those effects with a faster glucose clearance in a glucose tolerance test (GTT) and normalization of liver glycogen levels. The absence of miR-378 also restored the expression of genes regulating lipid homeostasis, such as Acly, Fasn, Gpam, Pnpla3, and Scd1. In conclusion, we report for the first time that miR-378 loss results in increased systemic metabolism of mdx mice. Together with our previous finding, demonstrating alleviation of the muscle-related symptoms of DMD, we propose that the inhibition of miR-378 may represent a new strategy to attenuate the multifaceted symptoms of DMD.


Assuntos
MicroRNAs , Distrofia Muscular de Duchenne , Aciltransferases , Animais , Modelos Animais de Doenças , Distrofina/genética , Camundongos , Camundongos Endogâmicos mdx , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Fenótipo , Fosfolipases A2 Independentes de Cálcio/genética , Fosfolipases A2 Independentes de Cálcio/metabolismo
6.
Skelet Muscle ; 11(1): 21, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479633

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is an incurable disease, caused by the mutations in the DMD gene, encoding dystrophin, an actin-binding cytoskeletal protein. Lack of functional dystrophin results in muscle weakness, degeneration, and as an outcome cardiac and respiratory failure. As there is still no cure for affected individuals, the pharmacological compounds with the potential to treat or at least attenuate the symptoms of the disease are under constant evaluation. The pleiotropic agents, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, known as statins, have been suggested to exert beneficial effects in the mouse model of DMD. On the other hand, they were also reported to induce skeletal-muscle myopathy. Therefore, we decided to verify the hypothesis that simvastatin may be considered a potential therapeutic agent in DMD. METHODS: Several methods including functional assessment of muscle function via grip strength measurement, treadmill test, and single-muscle force estimation, enzymatic assays, histological analysis of muscle damage, gene expression evaluation, and immunofluorescence staining were conducted to study simvastatin-related alterations in the mdx mouse model of DMD. RESULTS: In our study, simvastatin treatment of mdx mice did not result in improved running performance, grip strength, or specific force of the single muscle. Creatine kinase and lactate dehydrogenase activity, markers of muscle injury, were also unaffected by simvastatin delivery in mdx mice. Furthermore, no significant changes in inflammation, fibrosis, and angiogenesis were noted. Despite the decreased percentage of centrally nucleated myofibers in gastrocnemius muscle after simvastatin delivery, no changes were noticed in other regeneration-related parameters. Of note, even an increased rate of necrosis was found in simvastatin-treated mdx mice. CONCLUSION: In conclusion, our study revealed that simvastatin does not ameliorate DMD pathology.


Assuntos
Distrofia Muscular de Duchenne , Animais , Modelos Animais de Doenças , Distrofina/genética , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/tratamento farmacológico , Sinvastatina/farmacologia
7.
J Mol Cell Cardiol ; 160: 128-141, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329686

RESUMO

microRNA-378a (miR-378a) is one of the most highly expressed microRNAs in the heart. However, its role in the human cardiac tissue has not been fully understood. It was observed that miR-378a protects cardiomyocytes from hypertrophic growth by regulation of IGF1R and the expression of downstream kinases. Increased levels of miR-378a were reported in the serum of Duchenne muscular dystrophy (DMD) patients and female carriers of DMD gene-associated mutations with developed cardiomyopathy. In order to shed more light on the role of miR-378a in human cardiomyocytes and its potential involvement in DMD-related cardiomyopathy, we generated two human induced pluripotent stem cell (hiPSC) models; one with deletion of miR-378a and the second one with deletion of DMD exon 50 leading to the DMD phenotype. Our results indicate that lack of miR-378a does not influence the pluripotency of hiPSC and their ability to differentiate into cardiomyocytes (hiPSC-CM). miR-378a-deficient hiPSC-CM exhibited, however, significantly bigger size compared to the isogenic control cells, indicating the role of this miRNA in the hypertrophic growth of human cardiomyocytes. In accordance, the level of NFATc3, phosphoAKT, phosphoERK and ERK was higher in these cells compared to the control counterparts. A similar effect was achieved by silencing miR-378a with antagomirs. Of note, the percentage of cells with nuclear localization of NFATc3 was higher in miR-378a-deficient hiPSC-CM. Analysis of electrophysiological properties and Ca2+ oscillations revealed the decrease in the spike slope velocity and lower frequency of calcium spikes in miR-378a-deficient hiPSC-CM. Interestingly, the level of miR-378a increased gradually during cardiac differentiation of hiPSC. Of note, it was low until day 15 in differentiating DMD-deficient hiPSC-CM and then rose to a similar level as in the isogenic control counterparts. In summary, our findings confirmed the utility of hiPSC-based models for deciphering the role of miR-378a in the control and diseased human cardiomyocytes.


Assuntos
Sinalização do Cálcio/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Antagomirs/genética , Cálcio/metabolismo , Cardiomiopatias/complicações , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Diferenciação Celular/genética , Crescimento Celular , Tamanho Celular , Distrofina/genética , Distrofina/metabolismo , Éxons , Deleção de Genes , Células HEK293 , Humanos , MicroRNAs/genética , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética , Receptor IGF Tipo 1/metabolismo , Transfecção
8.
Biomedicines ; 9(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925757

RESUMO

Duchenne muscular dystrophy (DMD), caused by a lack of functional dystrophin, is characterized by progressive muscle degeneration. Interestingly, dystrophin is also expressed in endothelial cells (ECs), and insufficient angiogenesis has already been hypothesized to contribute to DMD pathology, however, its status in mdx mice, a model of DMD, is still not fully clear. Our study aimed to reveal angiogenesis-related alterations in skeletal muscles of mdx mice compared to wild-type (WT) counterparts. By investigating 6- and 12-week-old mice, we sought to verify if those changes are age-dependent. We utilized a broad spectrum of methods ranging from gene expression analysis, flow cytometry, and immunofluorescence imaging to determine the level of angiogenic markers and to assess muscle blood vessel abundance. Finally, we implemented the hindlimb ischemia (HLI) model, more biologically relevant in the context of functional studies evaluating angiogenesis/arteriogenesis processes. We demonstrated that both 6- and 12-week-old dystrophic mice exhibited dysregulation of several angiogenic factors, including decreased vascular endothelial growth factor A (VEGF) in different muscle types. Nonetheless, in younger, 6-week-old mdx animals, neither the abundance of CD31+α-SMA+ double-positive blood vessels nor basal blood flow and its restoration after HLI was affected. In 12-week-old mdx mice, although a higher number of CD31+α-SMA+ double-positive blood vessels and an increased percentage of skeletal muscle ECs were found, the abundance of pericytes was diminished, and blood flow was reduced. Moreover, impeded perfusion recovery after HLI associated with a blunted inflammatory and regenerative response was evident in 12-week-old dystrophic mice. Hence, our results reinforce the hypothesis of age-dependent angiogenic dysfunction in dystrophic mice. In conclusion, we suggest that older mdx mice constitute an appropriate model for preclinical studies evaluating the effectiveness of vascular-based therapies aimed at the restoration of functional angiogenesis to mitigate DMD severity.

9.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008897

RESUMO

Dysregulation of autophagy may contribute to the progression of various muscle diseases, including Duchenne muscular dystrophy (DMD). Heme oxygenase-1 (HO-1, encoded by Hmox1), a heme-degrading enzyme, may alleviate symptoms of DMD, inter alia, through anti-inflammatory properties. In the present study, we determined the role of HO-1 in the regulation of autophagy and mitophagy in mdx animals, a commonly used mouse model of the disease. In the gastrocnemius of 6-week-old DMD mice, the mRNA level of mitophagy markers: Bnip3 and Pink1, as well as autophagy regulators, e.g., Becn1, Map1lc3b, Sqstm1, and Atg7, was decreased. In the dystrophic diaphragm, changes in the latter were less prominent. In older, 12-week-old dystrophic mice, diminished expressions of Pink1 and Sqstm1 with upregulation of Atg5, Atg7, and Lamp1 was depicted. Interestingly, we demonstrated higher protein levels of autophagy regulator, LC3, in dystrophic muscles. Although the lack of Hmox1 in mdx mice influenced blood cell count and the abundance of profibrotic proteins, no striking differences in mRNA and protein levels of autophagy and mitophagy markers were found. In conclusion, we demonstrated complex, tissue, and age-dependent dysregulation of mitophagic and autophagic markers in DMD mice, which are not affected by the additional lack of Hmox1.


Assuntos
Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animais , Autofagia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Mitofagia
10.
Skelet Muscle ; 10(1): 35, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33287890

RESUMO

The nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as a master cytoprotective factor regulating the expression of genes encoding anti-oxidant, anti-inflammatory, and detoxifying proteins. The role of Nrf2 in the pathophysiology of skeletal muscles has been evaluated in different experimental models, however, due to inconsistent data, we aimed to investigate how Nrf2 transcriptional deficiency (Nrf2tKO) affects muscle functions both in an acute and chronic injury. The acute muscle damage was induced in mice of two genotypes-WT and Nrf2tKO mice by cardiotoxin (CTX) injection. To investigate the role of Nrf2 in chronic muscle pathology, mdx mice that share genetic, biochemical, and histopathological features with Duchenne muscular dystrophy (DMD) were crossed with mice lacking transcriptionally active Nrf2 and double knockouts (mdx/Nrf2tKO) were generated. To worsen the dystrophic phenotype, the analysis of disease pathology was also performed in aggravated conditions, by applying a long-term treadmill test. We have observed slightly increased muscle damage in Nrf2tKO mice after CTX injection. Nevertheless, transcriptional ablation of Nrf2 in mdx mice did not significantly aggravate the most deleterious, pathological hallmarks of DMD related to degeneration, inflammation, fibrotic scar formation, angiogenesis, and the number and proliferation of satellite cells in non-exercised conditions. On the other hand, upon chronic exercises, the degeneration and inflammatory infiltration of the gastrocnemius muscle, but not the diaphragm, turned to be increased in Nrf2tKOmdx in comparison to mdx mice. In conclusion, the lack of transcriptionally active Nrf2 influences moderately muscle pathology in acute CTX-induced muscle injury and chronic DMD mouse model, without affecting muscle functionality. Hence, in general, we demonstrated that the deficiency of Nrf2 transcriptional activity has no profound impact on muscle pathology in various models of muscle injury.


Assuntos
Distrofias Musculares/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Cardiotoxinas/toxicidade , Distrofina/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares/etiologia , Distrofias Musculares/genética , Fator 2 Relacionado a NF-E2/genética , Corrida
11.
Biomolecules ; 10(12)2020 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260307

RESUMO

Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics. In this review, we highlight recent discoveries on the role of hypoxia in the derivation of ESCs and the generation of iPSCs. We also summarize the existing protocols of hypoxia-driven differentiation of iPSCs toward ECs and discuss their possible applications in disease modeling and treatment of hypoxia-related disorders.


Assuntos
Hipóxia Celular , Células Endoteliais/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Humanos , Oxigênio/metabolismo
12.
Biomedicines ; 8(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297443

RESUMO

Cell therapies are extensively tested to restore heart function after myocardial infarction (MI). Survival of any cell type after intracardiac administration, however, may be limited due to unfavorable conditions of damaged tissue. Therefore, the aim of this study was to evaluate the therapeutic effect of adipose-derived stromal cells (ADSCs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) overexpressing either the proangiogenic SDF-1α or anti-inflammatory heme oxygenase-1 (HO-1) in a murine model of MI. ADSCs and hiPSCs were transduced with lentiviral vectors encoding luciferase (Luc), GFP and either HO-1 or SDF-1α. hiPSCs were then differentiated to hiPSC-CMs using small molecules modulating the WNT pathway. Genetically modified ADSCs were firstly administered via intracardiac injection after MI induction in Nude mice. Next, ADSCs-Luc-GFP and genetically modified hiPSC-CMs were injected into the hearts of the more receptive NOD/SCID strain to compare the therapeutic effect of both cell types. Ultrasonography, performed on days 7, 14, 28 and 42, revealed a significant decrease of left ventricular ejection fraction (LVEF) in all MI-induced groups. No improvement of LVEF was observed in ADSC-treated Nude and NOD/SCID mice. In contrast, administration of hiPSC-CMs resulted in a substantial increase of LVEF, occurring between 28 and 42 days after MI, and decreased fibrosis, regardless of genetic modification. Importantly, bioluminescence analysis, as well as immunofluorescent staining, confirmed the presence of hiPSC-CMs in murine tissue. Interestingly, the luminescence signal was strongest in hearts treated with hiPSC-CMs overexpressing HO-1. Performed experiments demonstrate that hiPSC-CMs, unlike ADSCs, are effective in improving heart function after MI. Additionally, long-term evaluation of heart function seems to be crucial for proper assessment of the effect of cell administration.

13.
JCI Insight ; 5(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32493839

RESUMO

The severity of Duchenne muscular dystrophy (DMD), an incurable disease caused by the lack of dystrophin, might be modulated by different factors, including miRNAs. Among them, miR-378 is considered of high importance for muscle biology, but intriguingly, its role in DMD and its murine model (mdx mice) has not been thoroughly addressed so far. Here, we demonstrate that dystrophic mice additionally globally lacking miR-378 (double-KO [dKO] animals) exhibited better physical performance and improved absolute muscle force compared with mdx mice. Accordingly, markers of muscle damage in serum were significantly decreased in dKO mice, accompanied by diminished inflammation, fibrosis, and reduced abundance of regenerating fibers within muscles. The lack of miR-378 also normalized the aggravated fusion of dystrophin-deficient muscle satellite cells (mSCs). RNA sequencing of gastrocnemius muscle transcriptome revealed fibroblast growth factor 1 (Fgf1) as one of the most significantly downregulated genes in mice devoid of miR-378, indicating FGF1 as one of the mediators of changes driven by the lack of miR-378. In conclusion, we suggest that targeting miR-378 has the potential to ameliorate DMD pathology.


Assuntos
MicroRNAs/genética , Músculo Esquelético , Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Animais , Regulação para Baixo , Fator 1 de Crescimento de Fibroblastos/biossíntese , Fator 1 de Crescimento de Fibroblastos/genética , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia
14.
Biochem Pharmacol ; 175: 113922, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32205093

RESUMO

Tumor hypoxia and high activity of hypoxia-inducible factor-1 (HIF-1) correlate with adverse disease outcomes, malignancy, resistance to therapy and metastasis. Nonetheless, recent studies indicate that under certain circumstances, HIF-1 stabilization may exert protective effects and even decrease tumor cell aggressiveness. This study aimed to characterize the potential anticancer effect of molidustat (BAY 85-3934), the prolyl hydroxylase (PHD) inhibitor and HIF-1 stabilizator. We confirmed that molidustat stabilizes HIF-1α and induces the expression of vascular endothelial growth factor (VEGF) in MDA-MB-231 breast cancer cells, to a similar or even greater extent than hypoxia. Interestingly, decreased cell survival and colony formation capabilities, together with S/G2 cell cycle arrest, were observed after treatment with PHD inhibitor. Importantly, molidustat enhanced the effectiveness of the chemotherapeutic drug, gemcitabine, on cancer cells. Finally, the xenograft model revealed decreased tumor growth in vivo after molidustat treatment. Both in vitro and in vivo analysis showed no differences in the angiogenic potential of endothelial cells treated with tumor-conditioned media or vascularization of the MDA-MB-231 xenografts, respectively. In summary, molidustat treatment exhibits an inhibitory effect on breast cancer cell survival, self-renewal capacity and potentiates the efficacy of chemotherapeutic gemcitabine.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pirazóis/farmacologia , Triazóis/farmacologia , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estabilidade Proteica/efeitos dos fármacos , Pirazóis/uso terapêutico , Distribuição Aleatória , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
Biomolecules ; 10(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963199

RESUMO

Elevated expression of heme oxygenase-1 (HO-1, encoded by HMOX1) is observed in various types of tumors. Hence, it is suggested that HO-1 may serve as a potential target in anticancer therapies. A novel approach to inhibit HO-1 is related to the synthetic lethality of this enzyme and fumarate hydratase (FH). In the current study, we aimed to validate the effect of genetic and pharmacological inhibition of HO-1 in cells isolated from patients suffering from hereditary leiomyomatosis and renal cell carcinoma (HLRCC)-an inherited cancer syndrome, caused by FH deficiency. Initially, we confirmed that UOK 262, UOK 268, and NCCFH1 cell lines are characterized by non-active FH enzyme, high expression of Nrf2 transcription factor-regulated genes, including HMOX1 and attenuated oxidative phosphorylation. Later, we demonstrated that shRNA-mediated genetic inhibition of HMOX1 resulted in diminished viability and proliferation of cancer cells. Chemical inhibition of HO activity using commercially available inhibitors, zinc and tin metalloporphyrins as well as recently described new imidazole-based compounds, especially SLV-11199, led to decreased cancer cell viability and clonogenic potential. In conclusion, the current study points out the possible relevance of HO-1 inhibition as a potential anti-cancer treatment in HLRCC. However, further studies revealing the molecular mechanisms are still needed.


Assuntos
Fumarato Hidratase/genética , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Leiomiomatose/genética , Leiomiomatose/terapia , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Neoplasias Uterinas/genética , Neoplasias Uterinas/terapia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fumarato Hidratase/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Humanos , Leiomiomatose/tratamento farmacológico , Leiomiomatose/metabolismo , Metaloporfirinas/farmacologia , Síndromes Neoplásicas Hereditárias/tratamento farmacológico , Síndromes Neoplásicas Hereditárias/metabolismo , RNA Interferente Pequeno/farmacologia , Terapêutica com RNAi , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/metabolismo
16.
Cardiovasc Res ; 116(7): 1386-1397, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504257

RESUMO

AIMS: MicroRNA-378a, highly expressed in skeletal muscles, was demonstrated to affect myoblasts differentiation and to promote tumour angiogenesis. We hypothesized that miR-378a could play a pro-angiogenic role in skeletal muscle and may be involved in regeneration after ischaemic injury in mice. METHODS AND RESULTS: Silencing of miR-378a in murine C2C12 myoblasts did not affect differentiation but impaired their secretory angiogenic potential towards endothelial cells. miR-378a knockout (miR-378a-/-) in mice resulted in a decreased number of CD31-positive blood vessels and arterioles in gastrocnemius muscle. In addition, diminished endothelial sprouting from miR-378a-/- aortic rings was shown. Interestingly, although fibroblast growth factor 1 (Fgf1) expression was decreased in miR-378a-/- muscles, this growth factor did not mediate the angiogenic effects exerted by miR-378a. In vivo, miR-378a knockout did not affect the revascularization of the ischaemic muscles in both normo- and hyperglycaemic mice subjected to femoral artery ligation (FAL). No difference in regenerating muscle fibres was detected between miR-378a-/- and miR-378+/+ mice. miR-378a expression temporarily declined in ischaemic skeletal muscles of miR-378+/+ mice already on Day 3 after FAL. At the same time, in the plasma, the level of miR-378a-3p was enhanced. Similar elevation of miR-378a-3p was reported in the plasma of patients with intermittent claudication in comparison to healthy donors. Local adeno-associated viral vectors-based miR-378a overexpression was enough to improve the revascularization of the ischaemic limb of wild-type mice on Day 7 after FAL, what was not reported after systemic delivery of vectors. In addition, the number of infiltrating CD45+ cells and macrophages (CD45+ CD11b+ F4/80+ Ly6G-) was higher in the ischaemic muscles of miR-378a-/- mice, suggesting an anti-inflammatory action of miR-378a. CONCLUSIONS: Data indicate miR-378a role in the pro-angiogenic effect of myoblasts and vascularization of skeletal muscle. After the ischaemic insult, the anti-angiogenic effect of miR-378a deficiency might be compensated by enhanced inflammation.


Assuntos
Isquemia/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/irrigação sanguínea , Mioblastos Esqueléticos/metabolismo , Neovascularização Fisiológica , Regeneração , Idoso , Animais , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Feminino , Terapia Genética , Humanos , Claudicação Intermitente/sangue , Claudicação Intermitente/genética , Isquemia/genética , Isquemia/fisiopatologia , Isquemia/terapia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade
17.
Skelet Muscle ; 9(1): 22, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412923

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic disease evoked by a mutation in the dystrophin gene. It is associated with progressive muscle degeneration and increased inflammation. Up to this date, mainly anti-inflammatory treatment is available for patients suffering from DMD. miR-146a is known to diminish inflammation and fibrosis in different tissues by downregulating the expression of proinflammatory cytokines. However, its role in DMD has not been studied so far.In our work, we have generated mice globally lacking both dystrophin and miR-146a (miR-146a-/-mdx) and examined them together with wild-type, single miR-146a knockout and dystrophic (mdx-lacking dystrophin) mice in a variety of aspects associated with DMD pathophysiology (muscle degeneration, inflammatory reaction, muscle satellite cells, muscle regeneration, and fibrosis).We have shown that miR-146a level is increased in dystrophic muscles in comparison to wild-type mice. Its deficiency augments the expression of proinflammatory cytokines (IL-1ß, CCL2, TNFα). However, muscle degeneration was not significantly worsened in mdx mice lacking miR-146a up to 24 weeks of age, although some aggravation of muscle damage and inflammation was evident in 12-week-old animals, though no effect of miR-146a deficiency was visible on quantity, proliferation, and in vitro differentiation of muscle satellite cells isolated from miR-146a-/-mdx mice vs. mdx. Similarly, muscle regeneration and collagen deposition were not changed by miR-146a deficiency. Nevertheless, the lack of miR-146a is associated with decreased Vegfa and increased Tgfb1.Overall, the lack of miR-146a did not aggravate significantly the dystrophic conditions in mdx mice, but its effect on DMD in more severe conditions warrants further investigation.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Colágeno/metabolismo , Progressão da Doença , Distrofina/deficiência , Distrofina/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Fator de Crescimento Transformador beta1/genética , Regulação para Cima
18.
Arch Biochem Biophys ; 671: 130-142, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31276659

RESUMO

Heme oxygenase-1 (HO-1, HMOX1) degrades pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin. The enzyme exerts multiple cytoprotective functions associated with the promotion of angiogenesis and counteraction of the detrimental effects of cellular stress which are crucial for the survival of both normal and tumor cells. Accordingly, in many tumor types, high expression of HO-1 correlates with poor prognosis and resistance to treatment, i.e. chemotherapy, suggesting inhibition of HO-1 as a possible antitumor approach. At the same time, the lack of selective and well-profiled inhibitors of HO-1 determines the unmet need for new modulators of this enzyme, with the potential to be used in either adjuvant therapy or as the stand-alone targeted therapeutics. In the current study, we provided novel inhibitors of HO-1 and validated the effect of pharmacological inhibition of HO activity by the imidazole-based inhibitor (SLV-11199) in human pancreatic (PANC-1) and prostate (DU-145) cancer cell lines. We demonstrated potent inhibition of HO activity in vitro and showed associated anticancer effectiveness of SLV-11199. Treatment with the tested compound led to decreased cancer cell viability and clonogenic potential. It has also sensitized the cancer cells to chemotherapy. In PANC-1 cells, diminished HO activity resulted in down-regulation of pro-angiogenic factors like IL-8. Mechanistic investigations revealed that the treatment with SLV-11199 decreased cell migration and inhibited MMP-1 and MMP-9 expression. Moreover, it affected mesenchymal phenotype by regulating key modulators of the epithelial to mesenchymal transition (EMT) signalling axis. Finally, F-actin cytoskeleton and focal contacts were destabilized by the reported compound. Overall, the current study suggests a possible relevance of the tested novel inhibitor of HO activity as a potential anticancer compound. To support such utility, further investigation is still needed, especially in in vivo conditions.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase-1/antagonistas & inibidores , Imidazóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos
19.
Cell Mol Life Sci ; 76(8): 1507-1528, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30770952

RESUMO

Duchenne muscular dystrophy (DMD) represents one of the most devastating types of muscular dystrophies which affect boys already at early childhood. Despite the fact that the primary cause of the disease, namely the lack of functional dystrophin is known already for more than 30 years, DMD still remains an incurable disease. Thus, an enormous effort has been made during recent years to reveal novel mechanisms that could provide therapeutic targets for DMD, especially because glucocorticoids treatment acts mostly symptomatic and exerts many side effects, whereas the effectiveness of genetic approaches aiming at the restoration of functional dystrophin is under the constant debate. Taking into account that dystrophin expression is not restricted to muscle cells, but is present also in, e.g., endothelial cells, alterations in angiogenesis process have been proposed to have a significant impact on DMD progression. Indeed, already before the discovery of dystrophin, several abnormalities in blood vessels structure and function have been revealed, suggesting that targeting angiogenesis could be beneficial in DMD. In this review, we will summarize current knowledge about the angiogenesis status both in animal models of DMD as well as in DMD patients, focusing on different organs as well as age- and sex-dependent effects. Moreover, we will critically discuss some approaches such as modulation of vascular endothelial growth factor or nitric oxide related pathways, to enhance angiogenesis and attenuate the dystrophic phenotype. Additionally, we will suggest the potential role of other mediators, such as heme oxygenase-1 or statins in those processes.


Assuntos
Heme Oxigenase-1/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Distrofia Muscular de Duchenne/terapia , Neovascularização Patológica/terapia , Óxido Nítrico/metabolismo , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Fatores Etários , Animais , Modelos Animais de Doenças , Progressão da Doença , Distrofina/deficiência , Humanos , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Neovascularização Patológica/patologia , Fatores Sexuais
20.
Acta Biochim Pol ; 65(4): 613-620, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30481230

RESUMO

Cyclosporine A (CsA), a widely used immunosuppressive drug, exerts nephrotoxic activities, as demonstrated by increased tubulointerstitial fibrosis, inflammation and podocyte damage. Recently, a number of microRNAs expressed in the kidney have been reported to be elevated during renal damage. Our aim was to investigate the effect of CsA on selected microRNAs in the mouse kidney after CsA treatment. Moreover, as heme oxygenase-1 (HO-1, encoded by the Hmox1 gene) was shown to play a protective role during kidney disorders, we assessed whether HO-1 deficiency in vivo influences the CsA-regulated microRNAs' expression. We have observed that the pro-fibrotic miR-21 and pro-apoptotic miR-34a expression was upregulated in kidneys of HO-1 deficient mice and it was further enhanced by CsA. Concomitantly, the level of anti-fibrotic microRNAs, belonging to miR-29 and miR-200 families, was down-regulated after CsA treatment. Generally, Hmox1 knock-out (Hmox1-/-) animals were more susceptible to CsA treatment, as the mortality rate was 4 out of 9 Hmox1-/- mice, and increased fibrosis (Tgfb2, Pai1), inflammation (Il6) and apoptosis (Cdkn1a-p21) were noticed in the HO-1 deficient kidneys. In summary, our data demonstrate that CsA induces significant changes in the expression of renal microRNAs and emphasize HO-1 deficiency as an important factor contributing to the CsA-mediated renal toxicity.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Ciclosporina/efeitos adversos , Heme Oxigenase-1/genética , Imunossupressores/efeitos adversos , Rim/efeitos dos fármacos , MicroRNAs/metabolismo , Injúria Renal Aguda/genética , Animais , Apoptose , Modelos Animais de Doenças , Regulação para Baixo , Rim/metabolismo , Camundongos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA