Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 13(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38545958

RESUMO

The zebrafish (Danio rerio) is an important model organism for basic as well as applied bio-medical research. One main advantage is its genetic tractability, which was greatly enhanced by the introduction of the CRISPR/Cas method a decade ago. The generation of loss-of-function alleles via the production of small insertions or deletions in the coding sequences of genes with CRISPR/Cas systems is now routinely achieved with high efficiency. The method is based on the error prone repair of precisely targeted DNA double strand breaks by non-homologous end joining (NHEJ) in the cell nucleus. However, editing the genome with base pair precision, by homology-directed repair (HDR), is by far less efficient and therefore often requires large-scale screening of potential carriers by labour intensive genotyping. Here we confirm that the Cas9 protein variant SpRY, with relaxed PAM requirement, can be used to target some sites in the zebrafish genome. In addition, we demonstrate that the incorporation of an artificial nuclear localisation signal (aNLS) into the Cas9 protein variants not only enhances the efficiency of gene knockout but also the frequency of HDR, thereby facilitating the efficient modification of single base pairs in the genome. Our protocols provide a guide for a cost-effective generation of versatile and potent Cas9 protein variants and efficient gene editing in zebrafish.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Animais , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Quebras de DNA de Cadeia Dupla
2.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37530080

RESUMO

Teleost fish of the genus Danio are excellent models to study the genetic and cellular bases of pigment pattern variation in vertebrates. The two sister species Danio rerio and Danio aesculapii show divergent patterns of horizontal stripes and vertical bars that are partly caused by the divergence of the potassium channel gene kcnj13. Here, we show that kcnj13 is required only in melanophores for interactions with xanthophores and iridophores, which cause location-specific pigment cell shapes and thereby influence colour pattern and contrast in D. rerio. Cis-regulatory rather than protein coding changes underlie kcnj13 divergence between the two Danio species. Our results suggest that homotypic and heterotypic interactions between the pigment cells and their shapes diverged between species by quantitative changes in kcnj13 expression during pigment pattern diversification.


Assuntos
Pigmentação , Peixe-Zebra , Animais , Forma Celular , Melanóforos/fisiologia , Pigmentação/genética , Pele , Peixe-Zebra/genética
4.
Nat Commun ; 11(1): 6230, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277491

RESUMO

The genetic basis of morphological variation provides a major topic in evolutionary developmental biology. Fish of the genus Danio display colour patterns ranging from horizontal stripes, to vertical bars or spots. Stripe formation in zebrafish, Danio rerio, is a self-organizing process based on cell-contact mediated interactions between three types of chromatophores with a leading role of iridophores. Here we investigate genes known to regulate chromatophore interactions in zebrafish that might have evolved to produce a pattern of vertical bars in its sibling species, Danio aesculapii. Mutant D. aesculapii indicate a lower complexity in chromatophore interactions and a minor role of iridophores in patterning. Reciprocal hemizygosity tests identify the potassium channel gene obelix/Kcnj13 as evolved between the two species. Complementation tests suggest evolutionary change through divergence in Kcnj13 function in two additional Danio species. Thus, our results point towards repeated and independent evolution of this gene during colour pattern diversification.


Assuntos
Cor , Pigmentação/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Cromatóforos/metabolismo , Evolução Molecular , Hibridização Genética , Fenótipo , Especificidade da Espécie , Peixe-Zebra/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA