Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961202

RESUMO

Background: Conduit pulmonary arterial stiffening and the resultant increase in pulmonary vascular impedance has emerged as an important underlying driver of pulmonary arterial hypertension (PAH). Given that matrix deposition is central to vascular remodeling, we evaluated the role of the collagen crosslinking enzyme lysyl oxidase like 2 (LOXL2) in this study. Methods and Results: Human pulmonary artery smooth muscle cells (PASMCs) subjected to hypoxia showed increased LOXL2 secretion. LOXL2 activity and expression were markedly higher in primary PASMCs isolated from pulmonary arteries of the rat Sugen 5416 + hypoxia (SuHx) model of severe PH. Similarly, LOXL2 protein and mRNA levels were increased in pulmonary arteries (PA) and lungs of rats with PH (SuHx and monocrotaline (MCT) models). Pulmonary arteries (PAs) isolated from rats with PH exhibited hypercontractility to phenylephrine and attenuated vasorelaxation elicited by acetylcholine, indicating severe endothelial dysfunction. Tensile testing revealed a a significant increase in PA stiffness in PH. Treatment with PAT-1251, a novel small-molecule LOXL2 inhibitor, improved active and passive properties of the PA ex vivo. There was an improvement in right heart function as measured by right ventricular pressure volume loops in-vivo with PAT-1251. Importantly PAT-1251 treatment ameliorated PH, resulting in improved pulmonary artery pressures, right ventricular remodeling, and survival. Conclusion: Hypoxia induced LOXL2 activation is a causal mechanism in pulmonary artery stiffening in PH, as well as pulmonary artery mechanical and functional decline. LOXL2 inhibition with PAT-1251 is a promising approach to improve pulmonary artery pressures, right ventricular elastance, cardiac relaxation, and survival in PAH. New & Noteworthy: Pulmonary arterial stiffening contributes to the progression of PAH and the deterioration of right heart function. This study shows that LOXL2 is upregulated in rat models of PH. LOXL2 inhibition halts pulmonary vascular remodeling and improves PA contractility, endothelial function and improves PA pressure, resulting in prolonged survival. Thus, LOXL2 is an important mediator of PA remodeling and stiffening in PH and a promising target to improve PA pressures and survival in PH.

2.
Am J Physiol Cell Physiol ; 325(3): C694-C707, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458436

RESUMO

Fibrosis is an important and essential reparative response to injury that, if left uncontrolled, results in the excessive synthesis, deposition, remodeling, and stiffening of the extracellular matrix, which is deleterious to organ function. Thus, the sustained activation of enzymes that catalyze matrix remodeling and cross linking is a fundamental step in the pathology of fibrotic diseases. Recent studies have implicated the amine oxidase lysyl oxidase like-2 (LOXL2) in this process and established significantly elevated expression of LOXL2 as a key component of profibrotic conditions in several organ systems. Understanding the relationship between LOXL2 and fibrosis as well as the mechanisms behind these relationships can offer significant insights for developing novel therapies. Here, we summarize the key findings that demonstrate the link between LOXL2 and fibrosis and inflammation, examine current therapeutics targeting LOXL2 for the treatment of fibrosis, and discuss future directions for experiments and biomedical engineering.


Assuntos
Doenças Cardiovasculares , Proteína-Lisina 6-Oxidase , Humanos , Proteína-Lisina 6-Oxidase/genética , Doenças Cardiovasculares/genética , Fibrose , Matriz Extracelular
3.
Commun Biol ; 6(1): 375, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029269

RESUMO

Lysyl oxidase-like 2 (LOXL2) has been identified as an essential mediator of extracellular matrix (ECM) remodeling in several disease processes including cardiovascular disease. Thus, there is growing interest in understanding the mechanisms by which LOXL2 is regulated in cells and tissue. While LOXL2 occurs both in full length and processed forms in cells and tissue, the precise identity of the proteases that process LOXL2 and the consequences of processing on LOXL2's function remain incompletely understood. Here we show that Factor Xa (FXa) is a protease that processes LOXL2 at Arg-338. Processing by FXa does not affect the enzymatic activity of soluble LOXL2. However, in situ in vascular smooth muscle cells, LOXL2 processing by FXa results in decreased cross-linking activity in the ECM and shifts substrate preference of LOXL2 from type IV collagen to type I collagen. Additionally, processing by FXa increases the interactions between LOXL2 and prototypical LOX, suggesting a potential compensatory mechanism to preserve total LOXs activity in the vascular ECM. FXa expression is prevalent in various organ systems and shares similar roles in fibrotic disease progression as LOXL2. Thus, LOXL2 processing by FXa could have significant implications in pathologies where LOXL2 is involved.


Assuntos
Fator Xa , Proteína-Lisina 6-Oxidase , Proteína-Lisina 6-Oxidase/metabolismo , Fator Xa/metabolismo , Matriz Extracelular/metabolismo , Miócitos de Músculo Liso/metabolismo
5.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34437300

RESUMO

Evidence links osteoporosis and cardiovascular disease but the cellular and molecular mechanisms are unclear. Here we identify skeleton-secreted platelet-derived growth factor-BB (PDGF-BB) as a key mediator of arterial stiffening in response to aging and metabolic stress. Aged mice and those fed high-fat diet (HFD), relative to young mice and those fed normal chow food diet, respectively, had higher serum PDGF-BB and developed bone loss and arterial stiffening. Bone/bone marrow preosteoclasts in aged mice and HFD mice secrete an excessive amount of PDGF-BB, contributing to the elevated PDGF-BB in blood circulation. Conditioned medium prepared from preosteoclasts stimulated proliferation and migration of the vascular smooth muscle cells. Conditional transgenic mice, in which PDGF-BB is overexpressed in preosteoclasts, had 3-fold higher serum PDGF-BB concentration and developed simultaneous bone loss and arterial stiffening spontaneously at a young age. Conversely, in conditional knockout mice, in which PDGF-BB is deleted selectively in preosteoclasts, HFD did not affect serum PDGF-BB concentration; as a result, HFD-induced bone loss and arterial stiffening were attenuated. These studies confirm that preosteoclasts are a main source of excessive PDGF-BB in blood circulation during aging and metabolic stress and establish the role of skeleton-derived PDGF-BB as an important mediator of vascular stiffening.


Assuntos
Becaplermina/fisiologia , Osteoclastos/fisiologia , Rigidez Vascular/fisiologia , Envelhecimento , Animais , Becaplermina/sangue , Reabsorção Óssea/etiologia , Dieta Hiperlipídica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Ratos , Ratos Sprague-Dawley
6.
Commun Biol ; 4(1): 840, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226627

RESUMO

The lysyl oxidase family of enzymes (LOXs) catalyze oxidative deamination of lysine side chains on collagen and elastin to initialize cross-linking that is essential for the formation of the extracellular matrix (ECM). Elevated expression of LOXs is highly associated with diverse disease processes. To date, the inability to detect total LOX catalytic function in situ has limited the ability to fully elucidate the role of LOXs in pathobiological mechanisms. Using LOXL2 as a representative member of the LOX family, we developed an in situ activity assay by utilizing the strong reaction between hydrazide and aldehyde to label the LOX-catalyzed allysine (-CHO) residues with biotin-hydrazide. The biotinylated ECM proteins are then labeled via biotin-streptavidin interaction and detected by fluorescence microscopy. This assay detects the total LOX activity in situ for both overexpressed and endogenous LOXs in cells and tissue samples and can be used for studies of LOXs as therapeutic targets.


Assuntos
Ensaios Enzimáticos/métodos , Proteína-Lisina 6-Oxidase/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Animais , Aorta/enzimologia , Biocatálise , Western Blotting , Linhagem Celular , Fluorometria/métodos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína-Lisina 6-Oxidase/genética , Ratos
7.
Cell Death Discov ; 7(1): 197, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326316

RESUMO

Tissue transglutaminase (TG2), a multifunctional protein of the transglutaminase family, has putative transamidation-independent functions in aging-associated vascular stiffening and dysfunction. Developing preclinical models will be critical to fully understand the physiologic relevance of TG2's transamidation-independent activity and to identify the specific function of TG2 for therapeutic targeting. Therefore, in this study, we harnessed CRISPR-Cas9 gene editing technology to introduce a mutation at cysteine 277 in the active site of the mouse Tgm2 gene. Heterozygous and homozygous Tgm2-C277S mice were phenotypically normal and were born at the expected Mendelian frequency. TG2 protein was ubiquitously expressed in the Tgm2-C277S mice at levels similar to those of wild-type (WT) mice. In the Tgm2-C277S mice, TG2 transglutaminase function was successfully obliterated, but the transamidation-independent functions ascribed to GTP, fibronectin, and integrin binding were preserved. In vitro, a remodeling stimulus led to the significant loss of vascular compliance in WT mice, but not in the Tgm2-C277S or TG2-/- mice. Vascular stiffness increased with age in WT mice, as measured by pulse-wave velocity and tensile testing. Tgm2-C277S mice were protected from age-associated vascular stiffening, and TG2 knockout yielded further protection. Together, these studies show that TG2 contributes significantly to overall vascular modulus and vasoreactivity independent of its transamidation function, but that transamidation activity is a significant cause of vascular matrix stiffening during aging. Finally, the Tgm2-C277S mice can be used for in vivo studies to explore the transamidation-independent roles of TG2 in physiology and pathophysiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA