Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 60(4): 778-788, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37071925

RESUMO

Jamestown Canyon virus disease (JCVD) is a potentially neuroinvasive condition caused by the arbovirus Jamestown Canyon virus (JCV). Human cases of JCVD have increased in New Hampshire (NH) over the past decade, but vector surveillance is limited by funding and person power. We conducted mosquito surveillance with a focus on human JCVD cases south central NH during 2021. Routine surveillance with CDC miniature traps baited with CO2 (lights removed) was supplemented by a paired trapping design to test the collection efficiency of octenol, and New Jersey light traps. We performed virus testing, blood meal analysis, and compared morphological identification with DNA barcoding. Over 50,000 mosquitoes were collected representing 28 species. Twelve JCV-positive pools were derived from 6 species of more than 1,600 pools tested. Of those, Aedes excrucians/stimulans (MLE 4.95, Diptera: Culicidae, Walker, 1856, 1848), and Aedes sticticus (MLE 2.02, Meigen, 1838) had the highest JCV infection rates, and Aedes canadensis (MLE 0.13, Theobold, 1901) and Coquillettidia perturbans (0.10, Diptera: Culicidae, Walker, 1856) had the lowest infection rates. One hundred and fifty-one blood meals were matched to a vertebrate host. All putative vectors fed on the amplifying host of JCV, white-tailed deer (36-100% of bloodmeals). Putative vectors that fed on human hosts included Aedes excrucians (8%), Anopheles punctipennis (25%, Diptera: Culicidae, Say, 1823), and Coquillettidia perturbans (51%). CDC traps baited with CO2 were effective for collecting putative vectors. DNA barcoding enhanced morphological identifications of damaged specimens. We present the first ecological overview of JCV vectors in NH.


Assuntos
Aedes , Anopheles , Infecções por Bunyaviridae , Culicidae , Cervos , Vírus da Encefalite da Califórnia , Ochlerotatus , Humanos , Animais , Dióxido de Carbono , New Hampshire , Mosquitos Vetores
2.
J Med Entomol ; 59(3): 903-910, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35289899

RESUMO

The control of medically important container-inhabiting mosquitoes is an ongoing challenge for mosquito control operations. Truck-mounted application equipment is a common option for rapid areawide larvicide deployment utilized by mosquito control operations. We tested the effectiveness of two truck-mounted sprayers (A1 Super Duty + Buffalo Turbine CSM3), for the deployment of water-dispersible biopesticides (VectoBac WDG:VectoLex WDG 50:50). Sixty residences within four residential neighborhoods in New Jersey were treated in 2019 and 2020. Three empty bioassay cups were placed in specific locations on each property (front yard/ back yard/ side of house), with an additional cup placed in an adjacent catch basin. This approach was replicated in two untreated control neighborhoods. Following larvicide application, cups were subjected to bioassays wherein larval mortality was tracked through adult eclosion. Overall, average larval mortality rates were 56% higher in treated cups compared against untreated controls. Mortality rates were affected by cup location, with 39% mortality in bioassay cups from back yards, 54% in those from the sides of houses, 73% in front yards, and 76% from cups in catch basins. Mortality did not differ significantly between the four treated neighborhoods, nor by the type of sprayer used. Our research shows that truck-mounted sprayers can be an effective method for larvicide deployment in residential neighborhoods, but effectiveness may depend upon the location of the target treatment area in relation to residences and other geographic obstacles.


Assuntos
Aedes , Inseticidas , Animais , Búfalos , Larva , Controle de Mosquitos/métodos , Características de Residência
3.
Pest Manag Sci ; 77(11): 5186-5201, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34272800

RESUMO

BACKGROUND: Mosquito larval control through the use of insecticides is the most common strategy for suppressing West Nile virus (WNV) vector populations in Connecticut (CT), USA. To evaluate the ability of larval control to reduce entomological risk metrics associated with WNV, we performed WNV surveillance and assessments of municipal larvicide application programs in Milford and Stratford, CT in 2019 and 2020. Each town treated catch basins and nonbasin habitats (Milford only) with biopesticide products during both WNV transmission seasons. Adult mosquitoes were collected weekly with gravid and CO2 -baited light traps and tested for WNV; larvae and pupae were sampled weekly from basins within 500 m of trapping sites, and Culex pipiens larval mortality was determined with laboratory bioassays of catch basin water samples. RESULTS: Declines in 4th instar larvae and pupae were observed in catch basins up to 2-week post-treatment, and we detected a positive relationship between adult female C. pipiens collections in gravid traps and pupal abundance in basins. We also detected a significant difference in total light trap collections between the two towns. Despite these findings, C. pipiens adult collections and WNV mosquito infection prevalence in gravid traps were similar between towns. CONCLUSION: Larvicide applications reduced pupal abundance and the prevalence of host-seeking adults with no detectable impact on entomological risk metrics for WNV. Further research is needed to better determine the level of mosquito larval control required to reduce WNV transmission risk.


Assuntos
Vírus do Nilo Ocidental , Animais , Connecticut , Feminino , Larva , Mosquitos Vetores , Comportamento de Redução do Risco
4.
J Med Entomol ; 58(6): 2330-2337, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144601

RESUMO

Eastern equine encephalitis virus (EEEV) is an arbovirus endemic to the eastern United States. Human cases are rare but can be serious. The primary enzootic vector is Culiseta melanura (Coquillett) (Diptera: Culicidae), an ornithophagic mosquito. We conducted an aerial application of a granular methoprene formulation in Hockomock Swamp (Massachusetts), which represents a focus of EEEV transmission. Water collected from inside and outside Cs. melanura crypts was evaluated in bioassays of early fourth instar Cs. melanura larvae using treated and untreated water. Adult eclosion rates were 36% significantly lower in treated compared with untreated water (P < 0.05). Eclosion rates for water collected from inside crypts were significantly higher (62%) than rates from outside crypts (30%) (P < 0.05), indicating higher efficacy outside crypts. We tested whether reduced methoprene efficacy inside the crypts was due to reduced chemical penetration into this habitat. Chemical water analyses confirmed that methoprene concentrations were lower inside the crypts (0.1 ± 0.05 ppb) compared to water from outside crypts (1.79 ± 0.41 ppb). The susceptibility of Cs. melanura to methoprene was also determined to allow for comparison against concentrations observed in water collected from the field (LC-95: 1.95 ± 0.5 ppb). Overall, methoprene-treated water prevented mosquito development for up to 4 wk, but with a reduction in efficacy between 4- and 6-wk post-application. Our results suggest that aerial methoprene applications can effectively treat open water in wetlands but may not provide efficacious control of Cs. melanura due to an inability to penetrate larval habitats.


Assuntos
Culicidae , Controle de Insetos , Inseticidas , Metoprene , Animais , Vírus da Encefalite Equina do Leste , Encefalomielite Equina/prevenção & controle , Massachusetts , Áreas Alagadas
5.
J Med Entomol ; 58(4): 1966-1969, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33822135

RESUMO

Pesticide resistance in medically significant disease vectors can negatively impact the efficacy of control efforts. Resistance research on ticks has focused primarily on species of veterinary significance that experience relatively high degrees of control pressure. Resistance in tick vectors of medical significance has received little attention, in part because area-wide pesticide applications are not used to control these generalist tick species. One of the few effective methods currently used for area-wide control of medically important ticks, including Ixodes scapularis Say (Acari: Ixodidae), is deployment of 4-poster devices. Deer self-apply a topical acaricide (permethrin) while feeding on corn from the devices. A 4-poster program using permethrin has been deployed on Shelter Island, NY to control I. scapularis populations since 2008. We collected engorged female ticks from deer in this management area and a location in the Mid-Hudson River Valley, NY without area-wide tick control. Larvae were reared from egg masses and their susceptibility to permethrin was tested. Larvae originating from a long-term laboratory colony were used as a susceptible baseline for comparison. Compared against the laboratory colony, resistance ratios at LC-50 for Shelter Island and Hudson Valley I. scapularis were 1.87 and 1.51, respectively. The susceptibilities of the field populations to permethrin were significantly lower than that of the colony ticks. We provide the first data using the larval packet test to establish baseline susceptibility for I. scapularis to permethrin along with information relevant to understanding resistance emergence in tick populations under sustained control pressure from 4-poster devices.


Assuntos
Cervos/parasitologia , Ixodes/efeitos dos fármacos , Permetrina/farmacologia , Infestações por Carrapato/veterinária , Acaricidas/farmacologia , Animais , Resistência a Inseticidas , Doença de Lyme/transmissão , Controle de Ácaros e Carrapatos/métodos
6.
J Med Entomol ; 58(2): 787-797, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128057

RESUMO

Pesticide resistance in arthropod vectors of disease agents is a growing issue globally. Despite the importance of resistance monitoring to inform mosquito control programs, no regional monitoring programs exist in the United States. The Northeastern Regional Center for Excellence in Vector-Borne Diseases (NEVBD) is a consortium of researchers and public health practitioners with a primary goal of supporting regional vector control activities. NEVBD initiated a pesticide resistance monitoring program to detect resistant mosquito populations throughout the northeastern United States. A regionwide survey was distributed to vector control agencies to determine needs and refine program development and in response, a specimen submission system was established, allowing agencies to submit Culex pipiens (L.) (Diptera:Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) for pesticide resistance testing. NEVBD also established larvicide resistance diagnostics for Bacillus thuringiensis israelensis (Bti) and methoprene. Additional diagnostics were developed for Cx. pipiens resistance to Lysinibacillus sphaericus. We received 58 survey responses, representing at least one agency from each of the 13 northeastern U.S. states. Results indicated that larvicides were deployed more frequently than adulticides, but rarely paired with resistance monitoring. Over 18,000 mosquitoes were tested from six states. Widespread low-level (1 × LC-99) methoprene resistance was detected in Cx. pipiens, but not in Ae. albopictus. No resistance to Bti or L. sphaericus was detected. Resistance to pyrethroids was detected in many locations for both species. Our results highlight the need for increased pesticide resistance testing in the United States and we provide guidance for building a centralized pesticide resistance testing program.


Assuntos
Culicidae/efeitos dos fármacos , Resistência a Inseticidas , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Animais , Bacillaceae , Bacillus thuringiensis , Bioensaio/métodos , Agentes de Controle Biológico/farmacologia , Culex/efeitos dos fármacos , Culex/crescimento & desenvolvimento , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Metoprene/farmacologia , Controle de Mosquitos , Mosquitos Vetores/crescimento & desenvolvimento , Piretrinas/farmacologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA