Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Sci Monit ; 30: e942507, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217285

RESUMO

BACKGROUND Smoking nicotine is considered to be one of the most harmful addictions, leading to the development of a number of health complications, including many pathologies in the oral cavity. The aim of this study was to examine the effect of smoking traditional cigarettes, e-cigarettes, and heat-not-burn products on profiles of salivary lipids and lipid peroxidation products in the unstimulated and stimulated saliva of healthy young adults with a smoking habit of up to 3 years. MATERIAL AND METHODS We enrolled 3 groups of 25 smoking patients each and a control group matched for age, gender, and oral status. In saliva collected from patients from the study groups and participants from the control group, the concentrations of sphingolipids: sphingosine, sphinganine, sphingosine-1-phosphate, ceramides, and salivary lipid peroxidation products - malondialdehyde (MDA) and 4-hydroxynonenal (HNE) - were measured. The normality of distribution was assessed using the Shapiro-Wilk test. For comparison of the results, one-way analysis of variance (ANOVA) followed by post hoc Tukey test was used. RESULTS We demonstrated that each type of smoking causes a decrease in the concentration of salivary lipids, and there was an increased concentration of salivary MDA and 4-HNE. CONCLUSIONS Smoking in the initial period of addiction leads to an increase in the concentration of lipid peroxidation products through increased oxidative stress, leading to disturbance of the lipid balance of the oral cavity (eg, due to damage to cell membranes).


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Humanos , Adulto Jovem , Fumar/efeitos adversos , Temperatura Alta , Estresse Oxidativo , Lipídeos , Saliva/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446046

RESUMO

Colorectal cancer is a heterogenous group of neoplasms showing a variety of clinical and pathological features depending on their anatomical location. Sphingolipids are involved in the formation and progression of cancers, and their changes are an important part of the abnormalities observed during carcinogenesis. Because the course of rectal and colonic cancer differs, the aim of the study was to assess whether the sphingolipid profile is also different in tumors of these two regions. Using a combination of ultra-high-performance liquid chromatography combined with triple quadrupole mass spectrometry, differences in the amounts of cellular sphingolipids were found in colorectal cancer. Sphingosine content was higher in rectal cancer than in adjacent healthy tissue, while the content of two ceramides (C18:0-Cer and C20:0-Cer) was lower. In colon cancer, a higher content of sphingosine, sphinganine, sphingosine-1-phosphate, and two ceramides (C14:0-Cer and C24:0-Cer) was found compared to healthy tissue, but there was no decrease in the amount of any of the assessed sphingolipids. In rectal cancer, the content of sphinganine and three ceramides (C16:0-Cer, C22:0-Cer, C24:0-Cer), as well as the entire pool of ceramides, was significantly lower compared to colon cancer. The S1P/Cer ratio in rectal cancer (S1P/C18:1-Cer, S1P/C20:0-Cer, S1P/C22:0-Cer, S1P/C24:1-Cer) and in colon cancer (S1P/C18:0-Cer, S1P/C18:1-Cer, S1P/C20:0-Cer) was higher than in adjacent healthy tissue and did not differ between the two sites (rectal cancer vs. colonic cancer). It seems that the development of colorectal cancer is accompanied by complex changes in the metabolism of sphingolipids, causing not only qualitative shifts in the ceramide pool of cancer tissue but also quantitative disturbances, depending on the location of the primary tumor.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Ceramidas/metabolismo , Lisofosfolipídeos/metabolismo
3.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108361

RESUMO

Sphingosine-1-phosphate (S1P) and ceramides (Cer) are engaged in key events of signal transduction, but their involvement in the pathogenesis of colorectal cancer is not conclusive. The aim of our study was to investigate how the modulation of sphingolipid metabolism through the silencing of the genes involved in the formation (SPHK1) and degradation (SGPL1) of sphingosine-1-phosphate would affect the sphingolipid profile and apoptosis of HCT-116 human colorectal cancer cells. Silencing of SPHK1 expression decreased S1P content in HCT-116 cells, which was accompanied by an elevation in sphingosine, C18:0-Cer, and C18:1-Cer, increase in the expression and activation of Caspase-3 and -9, and augmentation of apoptosis. Interestingly, silencing of SGLP1 expression increased cellular content of both the S1P and Cer (C16:0-; C18:0-; C18:1-; C20:0-; and C22:0-Cer), yet inhibited activation of Caspase-3 and upregulated protein expression of Cathepsin-D. The above findings suggest that modulation of the S1P level and S1P/Cer ratio regulates both cellular apoptosis and CRC metastasis through Cathepsin-D modulation. The cellular ratio of S1P/Cer seems to be a crucial component of the above mechanism.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Esfingosina/metabolismo , Caspase 3/genética , Apoptose , Ceramidas/metabolismo , Lisofosfolipídeos/metabolismo , Esfingolipídeos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Catepsinas/farmacologia
4.
J Clin Med ; 11(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233480

RESUMO

(1) Background: Disturbances in the sphingolipid profile are observed in many diseases. There are currently no data available on the evaluation of sphingolipids and ceramides in cholelithiasis in children. The aim of this study was to evaluate the concentrations of sphingolipids in the sera of pediatric patients with gallstones. We determined their relationship with anthropometric and biochemical parameters. (2) Methods: The concentrations of sphingolipids in serum samples were evaluated using a quantitative method, ultra-high-performance liquid chromatography-tandem mass spectrometry. (3) Results: The prospective study included 48 children and adolescents diagnosed with gallstones and 38 controls. Serum concentrations of total cholesterol (TC); sphinganine (SPA); ceramides-C14:0-Cer, C16:0-Cer, C18:1-Cer, C18:0-Cer, C20:0-Cer and C24:1-Cer; and lactosylceramides-C16:0-LacCer, C18:0-LacCer, C18:1-LacCer, C24:0-LacCer and C24:1-LacCer differed significantly between patients with cholelithiasis and without cholelithiasis. After adjusting for age, gender, obesity and TC and TG levels, we found the best differentiating sphingolipids for cholelithiasis in the form of decreased SPA, C14:0-Cer, C16:0-Cer, C24:1-LacCer and C24:0-LacCer concentration and increased C20:0-Cer, C24:1-Cer, C16:0-LacCer and C18:1-LacCer. The highest area under the curve (AUC), specificity and sensitivity were determined for C16:0-Cer with cholelithiasis diagnosis. (4) Conclusions: Our results suggest that serum sphingolipids may be potential biomarkers in pediatric patients with cholelithiasis.

5.
Cells ; 11(7)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35406688

RESUMO

Skeletal muscles account for ~80% of insulin-stimulated glucose uptake and play a key role in lipid metabolism. Consumption of a high-fat diet (HFD) contributes to metabolic changes in muscles, including the development of insulin resistance. The studies carried out to date indicate that the accumulation of biologically active lipids, such as long-chain acyl-CoA, diacylglycerols and ceramides, play an important role in the development of insulin resistance in skeletal muscles. Unfortunately, it has not yet been clarified which of these lipid groups plays the dominant role in inducing these disorders. In order to explore this topic further, we locally silenced the gene encoding serine palmitoyltransferase (SPT) in the gastrocnemius muscle of animals with HFD-induced insulin resistance. This enzyme is primarily responsible for the first step of de novo ceramide biosynthesis. The obtained results confirm that the HFD induces the development of whole-body insulin resistance, which results in inhibition of the insulin pathway. This is associated with an increased level of biologically active lipids in the muscles. Our results also demonstrate that silencing the SPT gene with the shRNA plasmid reduces the accumulation of ceramides in gastrocnemius muscle, which, in turn, boosts the activity of the insulin signaling pathway. Furthermore, inhibition of ceramide synthesis does not significantly affect the content of other lipids, which suggests the leading role of ceramide in the lipid-related induction of skeletal muscle insulin resistance.


Assuntos
Ceramidas , Resistência à Insulina , Serina C-Palmitoiltransferase , Animais , Ceramidas/metabolismo , Dieta Hiperlipídica , Inativação Gênica , Insulina/metabolismo , Resistência à Insulina/genética , Camundongos , Músculo Esquelético/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo
6.
Cells ; 11(2)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053322

RESUMO

Skeletal muscle is perceived as a major tissue in glucose and lipid metabolism. High fat diet (HFD) lead to the accumulation of intramuscular lipids, including: long chain acyl-CoA, diacylglycerols, and ceramides. Ceramides are considered to be one of the most important lipid groups in the generation of skeletal muscle insulin resistance. So far, it has not been clearly established whether all ceramides adversely affect the functioning of the insulin pathway, or whether there are certain ceramide species that play a pivotal role in the induction of insulin resistance. Therefore, we designed a study in which the expression of CerS1 and CerS5 genes responsible for the synthesis of C18:0-Cer and C16:0-Cer, respectively, was locally silenced in the gastrocnemius muscle of HFD-fed mice through in vivo electroporation-mediated shRNA plasmids. Our study indicates that HFD feeding induced both, the systemic and skeletal muscle insulin resistance, which was accompanied by an increase in the intramuscular lipid levels, decreased activation of the insulin pathway and, consequently, a decrease in the skeletal muscle glucose uptake. CerS1 silencing leads to a reduction in C18:0-Cer content, with a subsequent increase in the activity of the insulin pathway, and an improvement in skeletal muscle glucose uptake. Such effects were not visible in case of CerS5 silencing, which indicates that the accumulation of C18:0-Cer plays a decisive role in the induction of skeletal muscle insulin resistance.


Assuntos
Inativação Gênica , Glucose , Resistência à Insulina , Proteínas de Membrana , Músculo Esquelético , Esfingosina N-Aciltransferase , Animais , Masculino , Acil Coenzima A/metabolismo , Dieta Hiperlipídica , Diglicerídeos/metabolismo , Ácidos Graxos/sangue , Genes Reporter , Glucose/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo
7.
Biomolecules ; 10(4)2020 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325909

RESUMO

Much attention is paid to different sphingolipid pathways because of their possible use in diagnostics and treatment. However, the activity status and significance of ceramide pathways in colorectal cancer are still unclear. We analyzed colorectal cancer patients to evaluate sphingolipid profiles in the blood, colorectal cancer (CRC) tissues, and healthy surrounding colorectal tissues of the same patient, simultaneously, using liquid chromatography coupled with triple quadrupole mass spectrometry. Furthermore, we measured protein expression of de novo ceramide synthesis enzymes and mitochondrial markers in tissues using western blot. We confirmed the different sphingolipid contents in colorectal cancer tissue compared to healthy surrounding tissues. Furthermore, we showed changed amounts of several ceramides in more advanced colorectal cancer tissue and found a prominently higher circulating level of several of them. Moreover, we observed a relationship between the amounts of some ceramide species in colorectal cancer tissue and plasma depending on the stage of colorectal cancer according to TNM (tumors, nodes, metastasis) classification. We think that the combined measurement of several ceramide concentrations in plasma can help distinguish early-stage lesions from advanced colorectal cancer and can help produce a screening test to detect early colorectal cancer.


Assuntos
Ceramidas/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Metabolômica , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Estadiamento de Neoplasias , Curva ROC , Esfingolipídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA