Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comput Soc Sci ; : 1-42, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37363806

RESUMO

The COVID-19 pandemic has been accompanied by a surge of misinformation on social media which covered a wide range of different topics and contained many competing narratives, including conspiracy theories. To study such conspiracy theories, we created a dataset of 3495 tweets with manual labeling of the stance of each tweet w.r.t. 12 different conspiracy topics. The dataset thus contains almost 42,000 labels, each of which determined by majority among three expert annotators. The dataset was selected from COVID-19 related Twitter data spanning from January 2020 to June 2021 using a list of 54 keywords. The dataset can be used to train machine learning based classifiers for both stance and topic detection, either individually or simultaneously. BERT was used successfully for the combined task. The dataset can also be used to further study the prevalence of different conspiracy narratives. To this end we qualitatively analyze the tweets, discussing the structure of conspiracy narratives that are frequently found in the dataset. Furthermore, we illustrate the interconnection between the conspiracy categories as well as the keywords.

2.
Int J Data Sci Anal ; 15(3): 329-346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35669096

RESUMO

The COVID-19 pandemic has severely affected the lives of people worldwide, and consequently, it has dominated world news since March 2020. Thus, it is no surprise that it has also been the topic of a massive amount of misinformation, which was most likely amplified by the fact that many details about the virus were not known at the start of the pandemic. While a large amount of this misinformation was harmless, some narratives spread quickly and had a dramatic real-world effect. Such events are called digital wildfires. In this paper we study a specific digital wildfire: the idea that the COVID-19 outbreak is somehow connected to the introduction of 5G wireless technology, which caused real-world harm in April 2020 and beyond. By analyzing early social media contents we investigate the origin of this digital wildfire and the developments that lead to its wide spread. We show how the initial idea was derived from existing opposition to wireless networks, how videos rather than tweets played a crucial role in its propagation, and how commercial interests can partially explain the wide distribution of this particular piece of misinformation. We then illustrate how the initial events in the UK were echoed several months later in different countries around the world.

3.
Sci Rep ; 12(1): 4085, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260708

RESUMO

Online social networks are ubiquitous, have billions of users, and produce large amounts of data. While platforms like Reddit are based on a forum-like organization where users gather around topics, Facebook and Twitter implement a concept in which individuals represent the primary entity of interest. This makes them natural testbeds for exploring individual behavior in large social networks. Underlying these individual-based platforms is a network whose "friend" or "follower" edges are of binary nature only and therefore do not necessarily reflect the level of acquaintance between pairs of users. In this paper,we present the network of acquaintance "strengths" underlying the German Twittersphere. To that end, we make use of the full non-verbal information contained in tweet-retweet actions to uncover the graph of social acquaintances among users, beyond pure binary edges. The social connectivity between pairs of users is weighted by keeping track of the frequency of shared content and the time elapsed between publication and sharing. Moreover, we also present a preliminary topological analysis of the German Twitter network. Finally, making the data describing the weighted German Twitter network of acquaintances, we discuss how to apply this framework as a ground basis for investigating spreading phenomena of particular contents.


Assuntos
Mídias Sociais , Humanos , Rede Social
4.
Med Image Anal ; 70: 102007, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740740

RESUMO

Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.


Assuntos
Endoscopia Gastrointestinal , Endoscopia , Diagnóstico por Imagem , Humanos
5.
Sci Data ; 7(1): 283, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859981

RESUMO

Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop systems for automatic analysis, like detecting disease or other lesions. In this respect, this article presents HyperKvasir, the largest image and video dataset of the gastrointestinal tract available today. The data is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 videos, and represents anatomical landmarks as well as pathological and normal findings. The total number of images and video frames together is around 1 million. Initial experiments demonstrate the potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The HyperKvasir dataset can play a valuable role in developing better algorithms and computer-assisted examination systems not only for gastro- and colonoscopy, but also for other fields in medicine.


Assuntos
Inteligência Artificial , Diagnóstico por Computador , Endoscopia Gastrointestinal , Humanos , Interpretação de Imagem Assistida por Computador
6.
J Appl Clin Med Phys ; 20(8): 141-154, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31251460

RESUMO

Wireless capsule endoscopy (WCE) is an effective technology that can be used to make a gastrointestinal (GI) tract diagnosis of various lesions and abnormalities. Due to a long time required to pass through the GI tract, the resulting WCE data stream contains a large number of frames which leads to a tedious job for clinical experts to perform a visual check of each and every frame of a complete patient's video footage. In this paper, an automated technique for bleeding detection based on color and texture features is proposed. The approach combines the color information which is an essential feature for initial detection of frame with bleeding. Additionally, it uses the texture which plays an important role to extract more information from the lesion captured in the frames and allows the system to distinguish finely between borderline cases. The detection algorithm utilizes machine-learning-based classification methods, and it can efficiently distinguish between bleeding and nonbleeding frames and perform pixel-level segmentation of bleeding areas in WCE frames. The performed experimental studies demonstrate the performance of the proposed bleeding detection method in terms of detection accuracy, where we are at least as good as the state-of-the-art approaches. In this research, we have conducted a broad comparison of a number of different state-of-the-art features and classification methods that allows building an efficient and flexible WCE video processing system.


Assuntos
Algoritmos , Endoscopia por Cápsula/métodos , Cor , Hemorragia Gastrointestinal/diagnóstico , Trato Gastrointestinal/patologia , Reconhecimento Automatizado de Padrão/métodos , Gravação em Vídeo/métodos , Hemorragia Gastrointestinal/diagnóstico por imagem , Trato Gastrointestinal/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Tecnologia sem Fio
7.
IEEE Trans Med Imaging ; 36(6): 1231-1249, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28182555

RESUMO

Colonoscopy is the gold standard for colon cancer screening though some polyps are still missed, thus preventing early disease detection and treatment. Several computational systems have been proposed to assist polyp detection during colonoscopy but so far without consistent evaluation. The lack of publicly available annotated databases has made it difficult to compare methods and to assess if they achieve performance levels acceptable for clinical use. The Automatic Polyp Detection sub-challenge, conducted as part of the Endoscopic Vision Challenge (http://endovis.grand-challenge.org) at the international conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2015, was an effort to address this need. In this paper, we report the results of this comparative evaluation of polyp detection methods, as well as describe additional experiments to further explore differences between methods. We define performance metrics and provide evaluation databases that allow comparison of multiple methodologies. Results show that convolutional neural networks are the state of the art. Nevertheless, it is also demonstrated that combining different methodologies can lead to an improved overall performance.


Assuntos
Pólipos do Colo , Colonoscopia , Neoplasias do Colo , Detecção Precoce de Câncer , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA