Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Front Neurosci ; 17: 1133086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694109

RESUMO

The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain like the g-ratio which characterises the relative myelination of axons. However, the fibre-orientation dependence of R2* degrades its reproducibility and any microstructural derivative measure. To estimate its orientation-independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) measurements at arbitrary orientations, a second-order polynomial in time model (hereafter M2) can be used. Its linear time-dependent parameter, ß1, can be biophysically related to R2,iso* when neglecting the myelin water (MW) signal in the hollow cylinder fibre model (HCFM). Here, we examined the performance of M2 using experimental and simulated data with variable g-ratio and fibre dispersion. We found that the fitted ß1 can estimate R2,iso* using meGRE with long maximum-echo time (TEmax ≈ 54 ms), but not accurately captures its microscopic dependence on the g-ratio (error 84%). We proposed a new heuristic expression for ß1 that reduced the error to 12% for ex vivo compartmental R2 values. Using the new expression, we could estimate an MW fraction of 0.14 for fibres with negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental R2 values but not for the in vivo values. M2 and the HCFM-based simulations failed to explain the measured R2*-orientation-dependence around the magic angle for a typical in vivo meGRE protocol (with TEmax ≈ 18 ms). In conclusion, further validation and the development of movement-robust in vivo meGRE protocols with TEmax ≈ 54 ms are required before M2 can be used to estimate R2,iso* in subjects.

2.
Magn Reson Med ; 87(4): 1952-1970, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34812528

RESUMO

PURPOSE: Low SNR in fluorine-19 (19 F) MRI benefits from cryogenically-cooled transceive surface RF probes (CRPs), but strong B1 inhomogeneities hinder quantification. Rapid acquisition with refocused echoes (RARE) is an SNR-efficient method for MRI of neuroinflammation with perfluorinated compounds but lacks an analytical signal intensity equation to retrospectively correct B1 inhomogeneity. Here, a workflow was proposed and validated to correct and quantify 19 F-MR signals from the inflamed mouse brain using a 19 F-CRP. METHODS: In vivo 19 F-MR images were acquired in a neuroinflammation mouse model with a quadrature 19 F-CRP using an imaging setup including 3D-printed components to acquire co-localized anatomical and 19 F images. Model-based corrections were validated on a uniform 19 F phantom and in the neuroinflammatory model. Corrected 19 F-MR images were benchmarked against reference images and overlaid on in vivo 1 H-MR images. Computed concentration uncertainty maps using Monte Carlo simulations served as a measure of performance of the B1 corrections. RESULTS: Our study reports on the first quantitative in vivo 19 F-MR images of an inflamed mouse brain using a 19 F-CRP, including in vivo T1 calculations for 19 F-nanoparticles during pathology and B1 corrections for 19 F-signal quantification. Model-based corrections markedly improved 19 F-signal quantification from errors > 50% to < 10% in a uniform phantom (p < 0.001). Concentration uncertainty maps ex vivo and in vivo yielded uncertainties that were generally < 25%. Monte Carlo simulations prescribed SNR ≥ 10.1 to reduce uncertainties < 10%, and SNR ≥ 4.25 to achieve uncertainties < 25%. CONCLUSION: Our model-based correction method facilitated 19 F signal quantification in the inflamed mouse brain when using the SNR-boosting 19 F-CRP technology, paving the way for future low-SNR 19 F-MRI applications in vivo.


Assuntos
Imageamento por Ressonância Magnética , Doenças Neuroinflamatórias , Animais , Imageamento por Ressonância Magnética/métodos , Camundongos , Imagens de Fantasmas , Ondas de Rádio , Estudos Retrospectivos
3.
Quant Imaging Med Surg ; 11(7): 3098-3119, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34249638

RESUMO

BACKGROUND: The use of rigid multi-exponential models (with a priori predefined numbers of components) is common practice for diffusion-weighted MRI (DWI) analysis of the kidney. This approach may not accurately reflect renal microstructure, as the data are forced to conform to the a priori assumptions of simplified models. This work examines the feasibility of less constrained, data-driven non-negative least squares (NNLS) continuum modelling for DWI of the kidney tubule system in simulations that include emulations of pathophysiological conditions. METHODS: Non-linear least squares (LS) fitting was used as reference for the simulations. For performance assessment, a threshold of 5% or 10% for the mean absolute percentage error (MAPE) of NNLS and LS results was used. As ground truth, a tri-exponential model using defined volume fractions and diffusion coefficients for each renal compartment (tubule system: Dtubules , ftubules ; renal tissue: Dtissue , ftissue ; renal blood: Dblood , fblood ;) was applied. The impact of: (I) signal-to-noise ratio (SNR) =40-1,000, (II) number of b-values (n=10-50), (III) diffusion weighting (b-rangesmall =0-800 up to b-rangelarge =0-2,180 s/mm2), and (IV) fixation of the diffusion coefficients Dtissue and Dblood was examined. NNLS was evaluated for baseline and pathophysiological conditions, namely increased tubular volume fraction (ITV) and renal fibrosis (10%: grade I, mild) and 30% (grade II, moderate). RESULTS: NNLS showed the same high degree of reliability as the non-linear LS. MAPE of the tubular volume fraction (ftubules ) decreased with increasing SNR. Increasing the number of b-values was beneficial for ftubules precision. Using the b-rangelarge led to a decrease in MAPE ftubules compared to b-rangesmall. The use of a medium b-value range of b=0-1,380 s/mm2 improved ftubules precision, and further bmax increases beyond this range yielded diminishing improvements. Fixing Dblood and Dtissue significantly reduced MAPE ftubules and provided near perfect distinction between baseline and ITV conditions. Without constraining the number of renal compartments in advance, NNLS was able to detect the (fourth) fibrotic compartment, to differentiate it from the other three diffusion components, and to distinguish between 10% vs. 30% fibrosis. CONCLUSIONS: This work demonstrates the feasibility of NNLS modelling for DWI of the kidney tubule system and shows its potential for examining diffusion compartments associated with renal pathophysiology including ITV fraction and different degrees of fibrosis.

4.
Acta Physiol (Oxf) ; 233(2): e13701, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34089569

RESUMO

AIM: Kidney diseases constitute a major health challenge, which requires noninvasive imaging to complement conventional approaches to diagnosis and monitoring. Several renal pathologies are associated with changes in kidney size, offering an opportunity for magnetic resonance imaging (MRI) biomarkers of disease. This work uses dynamic MRI and an automated bean-shaped model (ABSM) for longitudinal quantification of pathophysiologically relevant changes in kidney size. METHODS: A geometry-based ABSM was developed for kidney size measurements in rats using parametric MRI (T2 , T2 * mapping). The ABSM approach was applied to longitudinal renal size quantification using occlusion of the (a) suprarenal aorta or (b) the renal vein, (c) increase in renal pelvis and intratubular pressure and (d) injection of an X-ray contrast medium into the thoracic aorta to induce pathophysiologically relevant changes in kidney size. RESULTS: The ABSM yielded renal size measurements with accuracy and precision equivalent to the manual segmentation, with >70-fold time savings. The automated method could detect a ~7% reduction (aortic occlusion) and a ~5%, a ~2% and a ~6% increase in kidney size (venous occlusion, pelvis and intratubular pressure increase and injection of X-ray contrast medium, respectively). These measurements were not affected by reduced image quality following administration of ferumoxytol. CONCLUSION: Dynamic MRI in conjunction with renal segmentation using an ABSM supports longitudinal quantification of changes in kidney size in pathophysiologically relevant experimental setups mimicking realistic clinical scenarios. This can potentially be instrumental for developing MRI-based diagnostic tools for various kidney disorders and for gaining new insight into mechanisms of renal pathophysiology.


Assuntos
Imageamento por Ressonância Magnética , Doenças Vasculares , Animais , Rim/diagnóstico por imagem , Ratos
5.
J Cardiovasc Magn Reson ; 23(1): 63, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34053450

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) related myocardial vascular remodelling may lead to the reduction of myocardial blood supply and a subsequent progressive loss of cardiac function. This process has been difficult to observe and thus their connection remains unclear. Here we used non-invasive myocardial blood flow sensitive CMR to show an impairment of resting myocardial perfusion in a mouse model of naturally occurring HCM. METHODS: We used a mouse model (DBA/2 J; D2 mouse strain) that spontaneously carries variants in the two most susceptible HCM genes-Mybpc3 and Myh7 and bears the key features of human HCM. The C57BL/6 J (B6) was used as a reference strain. Mice with either B6 or D2 backgrounds (male: n = 4, female: n = 4) underwent cine-CMR for functional assessment at 9.4 T. Left ventricular (LV) wall thickness was measured in end diastolic phase by cine-CMR. Quantitative myocardial perfusion maps (male: n = 5, female: n = 5 in each group) were acquired from arterial spin labelling (cine ASL-CMR) at rest. Myocardial perfusion values were measured by delineating different regions of interest based on the LV segmentation model in the mid ventricle of the LV myocardium. Directly after the CMR, the mouse hearts were removed for histological assessments to confirm the incidence of myocardial interstitial fibrosis (n = 8 in each group) and small vessel remodelling such as vessel density (n = 6 in each group) and perivascular fibrosis (n = 8 in each group). RESULTS: LV hypertrophy was more pronounced in D2 than in B6 mice (male: D2 LV wall thickness = 1.3 ± 0.1 mm vs B6 LV wall thickness = 1.0 ± 0.0 mm, p < 0.001; female: D2 LV wall thickness = 1.0 ± 0.1 mm vs B6 LV wall thickness = 0.8 ± 0.1 mm, p < 0.01). The resting global myocardial perfusion (myocardial blood flow; MBF) was lower in D2 than in B6 mice (end-diastole: D2 MBFglobal = 7.5 ± 0.6 vs B6 MBFglobal = 9.3 ± 1.6 ml/g/min, p < 0.05; end-systole: D2 MBFglobal = 6.6 ± 0.8 vs B6 MBFglobal = 8.2 ± 2.6 ml/g/min, p < 0.01). This myocardial microvascular dysfunction was observed and associated with a reduction in regional MBF, mainly in the interventricular septal and inferior areas of the myocardium. Immunofluorescence revealed a lower number of vessel densities in D2 than in B6 (D2 capillary = 31.0 ± 3.8% vs B6 capillary = 40.7 ± 4.6%, p < 0.05). Myocardial collagen volume fraction (CVF) was significantly higher in D2 LV versus B6 LV mice (D2 CVF = 3.7 ± 1.4% vs B6 CVF = 1.7 ± 0.7%, p < 0.01). Furthermore, a higher ratio of perivascular fibrosis (PFR) was found in D2 than in B6 mice (D2 PFR = 2.3 ± 1.0%, B6 PFR = 0.8 ± 0.4%, p < 0.01). CONCLUSIONS: Our work describes an imaging marker using cine ASL-CMR with a potential to monitor vascular and myocardial remodelling in HCM.


Assuntos
Cardiomiopatia Hipertrófica , Circulação Coronária , Animais , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/genética , Feminino , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Valor Preditivo dos Testes
6.
Methods Mol Biol ; 2216: 3-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33475991

RESUMO

Renal MRI holds incredible promise for making a quantum leap in improving diagnosis and care of patients with a multitude of diseases, by moving beyond the limitations and restrictions of current routine clinical practice. Clinical and preclinical renal MRI is advancing with ever increasing rapidity, and yet, aside from a few examples of renal MRI in routine use, it is still not good enough. Several roadblocks are still delaying the pace of progress, particularly inefficient education of renal MR researchers, and lack of harmonization of approaches that limits the sharing of results among multiple research groups.Here we aim to address these limitations for preclinical renal MRI (predominantly in small animals), by providing a comprehensive collection of more than 40 publications that will serve as a foundational resource for preclinical renal MRI studies. This includes chapters describing the fundamental principles underlying a variety of renal MRI methods, step-by-step protocols for executing renal MRI studies, and detailed guides for data analysis. This collection will serve as a crucial part of a roadmap toward conducting renal MRI studies in a robust and reproducible way, that will promote the standardization and sharing of data.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.


Assuntos
Biomarcadores/análise , Nefropatias/classificação , Nefropatias/patologia , Rim/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Guias de Prática Clínica como Assunto/normas , Progressão da Doença , Humanos , Nefropatias/terapia , Reprodutibilidade dos Testes
7.
Methods Mol Biol ; 2216: 131-155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33475998

RESUMO

Magnetic resonance imaging (MRI) is a noninvasive imaging technology that offers unparalleled anatomical and functional detail, along with diagnostic sensitivity. MRI is suitable for longitudinal studies due to the lack of exposure to ionizing radiation. Before undertaking preclinical MRI investigations of the kidney, the appropriate MRI hardware should be carefully chosen to balance the competing demands of image quality, spatial resolution, and imaging speed, tailored to the specific scientific objectives of the investigation. Here we describe the equipment needed to perform renal MRI in rodents, with the aim to guide the appropriate hardware selection to meet the needs of renal MRI applications.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This chapter on hardware considerations for renal MRI in small animals is complemented by two separate publications describing the experimental procedure and data analysis.


Assuntos
Biomarcadores/análise , Desenho de Equipamento , Nefropatias/patologia , Rim/fisiologia , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Animais , Reprodutibilidade dos Testes
8.
Methods Mol Biol ; 2216: 349-367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476010

RESUMO

Magnetic resonance imaging (MRI) is an emerging method to obtain valuable functional and structural information about the kidney noninvasively. Before performing specialized MR measurements for probing tissue structure and function, some essential practical steps are needed, which are common for most applications. Here we describe in a step-by-step manner how to (1) achieve the double-oblique slice orientation coronal-to-the-kidney, (2) adapt the scan protocol for avoiding aortic flow artifacts and covering both kidneys, (3) perform localized shimming on the kidney, and (4) check perfusion in the large renal blood vessels using time-of-flight (TOF) angiography. The procedures are tailored to preclinical MRI but conceptionally are also applicable to human MRI.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter explains the initial and essential MRI steps that precede specific functional and structural MR imaging techniques (T1- and T2*-mapping, DWI , ASL , etc.), which are described in separate chapters.


Assuntos
Biomarcadores/análise , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Monitorização Fisiológica/métodos , Animais , Camundongos , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Ratos Wistar , Software
9.
Methods Mol Biol ; 2216: 327-347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476009

RESUMO

Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe methods to study control of renal hemodynamics and tissue oxygenation by means of invasive probes in anesthetized rats. Step-by-step protocols are provided for two setups, one for experiments in laboratories for integrative physiology and the other for experiments within small-animal magnetic resonance scanners.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by a separate chapter describing the basic concepts of quantitatively assessing renal perfusion and oxygenation with invasive probes.


Assuntos
Hemodinâmica , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Monitorização Fisiológica/métodos , Oxigênio/metabolismo , Animais , Rim/cirurgia , Masculino , Consumo de Oxigênio , Ratos , Ratos Wistar , Software
10.
Methods Mol Biol ; 2216: 279-299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476007

RESUMO

Kidney-associated pathologies would greatly benefit from noninvasive and robust methods that can objectively quantify changes in renal function. In the past years there has been a growing incentive to develop new applications for fluorine (19F) MRI in biomedical research to study functional changes during disease states. 19F MRI represents an instrumental tool for the quantification of exogenous 19F substances in vivo. One of the major benefits of 19F MRI is that fluorine in its organic form is absent in eukaryotic cells. Therefore, the introduction of exogenous 19F signals in vivo will yield background-free images, thus providing highly selective detection with absolute specificity in vivo. Here we introduce the concept of 19F MRI, describe existing challenges, especially those pertaining to signal sensitivity, and give an overview of preclinical applications to illustrate the utility and applicability of this technique for measuring renal function in animal models.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.


Assuntos
Biomarcadores/análise , Imagem por Ressonância Magnética de Flúor-19/métodos , Flúor/análise , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Monitorização Fisiológica/métodos , Animais , Humanos , Software
11.
Methods Mol Biol ; 2216: 403-417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476013

RESUMO

Renal hypoxia is generally accepted as a key pathophysiologic event in acute kidney injury of various origins, and has also been suggested to play a role in the development of chronic kidney disease. Here we describe a step-by-step experimental protocol for indirect monitoring of renal blood oxygenation in rodents via the deoxyhemoglobin sensitive MR parameters T2* and T2-a contrast mechanism known as the blood oxygenation level dependent (BOLD) effect. Since an absolute quantification of renal oxygenation from T2*/T2 remains challenging, the effects of controlled and standardized variations in the fraction of inspired oxygen are used for bench marking. This MRI method may be useful for investigating renal blood oxygenation of small rodents in vivo under various experimental (patho)physiological conditions.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Monitorização Fisiológica/métodos , Oxigênio/sangue , Animais , Consumo de Oxigênio , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Ratos Wistar , Software
12.
Methods Mol Biol ; 2216: 419-428, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476014

RESUMO

Renal diffusion-weighted imaging (DWI) can be used to obtain information on the microstructure of kidney tissue, and has the potential to provide MR-biomarkers for functional renal imaging. Here we describe in a step-by-step experimental protocol the MRI method for measuring renal diffusion coefficients in rodents using ADC or IVIM models. Both methods provide quantification of renal diffusion coefficients; however, IVIM, a more complex model, allows for the calculation of the pseudodiffusion and fraction introduced by tissue vascular and tubular components. DWI provides information of renal microstructure contributing to the understanding of the physiology and the underlying processes that precede the beginning of pathologies.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis.


Assuntos
Biomarcadores/análise , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Animais , Meios de Contraste , Camundongos , Monitorização Fisiológica , Software
13.
Methods Mol Biol ; 2216: 495-507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476020

RESUMO

Inflammation is one underlying contributing factor in the pathology of acute and chronic kidney disorders. Phagocytes such as monocytes, neutrophils and dendritic cells are considered to play a deleterious role in the progression of kidney disease but may also contribute to organ homeostasis. The kidney is a target of life-threatening autoimmune disorders such as the antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV). Neutrophils and monocytes express ANCA antigens and play an important role in the pathogenesis of AAV. Noninvasive in vivo methods that can quantify the distribution of inflammatory cells in the kidney as well as other organs in vivo would be vital to identify the causality and significance of inflammation during disease progression. Here we describe an noninvasive technique to study renal inflammation in rodents in vivo using fluorine (19F) MRI. In this protocol we chose a murine ANCA-AAV model of renal inflammation and made use of nanoparticles prepared from perfluoro-5-crown-15-ether (PFCE) for renal 19F MRI.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis.


Assuntos
Imagem por Ressonância Magnética de Flúor-19/métodos , Processamento de Imagem Assistida por Computador/métodos , Rim/imunologia , Rim/fisiologia , Monitorização Fisiológica/métodos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidase/fisiologia , Software
14.
Methods Mol Biol ; 2216: 549-564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476023

RESUMO

Functional renal MRI promises access to a wide range of physiologically relevant parameters such as blood oxygenation, perfusion, tissue microstructure, pH, and sodium concentration. For quantitative comparison of results, representative values must be extracted from the parametric maps obtained with these different MRI techniques. To improve reproducibility of results this should be done based on regions-of-interest (ROIs) that are clearly and objectively defined.Semiautomated subsegmentation of the kidney in magnetic resonance images represents a simple but very valuable approach for the quantitative analysis of imaging parameters in multiple ROIs that are associated with specific anatomic locations. Thereby, it facilitates comparing MR parameters between different kidney regions, as well as tracking changes over time.Here we provide detailed step-by-step instructions for two recently developed subsegmentation techniques that are suitable for kidneys of small rodents: i) the placement of ROIs in cortex, outer and the inner medulla based on typical kidney morphology and ii) the division of the kidney into concentrically oriented layers.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Rim/anatomia & histologia , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Animais , Humanos , Software
15.
Methods Mol Biol ; 2216: 565-576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476024

RESUMO

In order to tackle the challenges caused by the variability in estimated MRI parameters (e.g., T2* and T2) due to low SNR a number of strategies can be followed. One approach is postprocessing of the acquired data with a filter. The basic idea is that MR images possess a local spatial structure that is characterized by equal, or at least similar, noise-free signal values in vicinities of a location. Then, local averaging of the signal reduces the noise component of the signal. In contrast, nonlocal means filtering defines the weights for averaging not only within the local vicinity, bur it compares the image intensities between all voxels to define "nonlocal" weights. Furthermore, it generally compares not only single-voxel intensities but small spatial patches of the data to better account for extended similar patterns. Here we describe how to use an open source NLM filter tool to denoise 2D MR image series of the kidney used for parametric mapping of the relaxation times T2* and T2.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.


Assuntos
Algoritmos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Animais , Monitorização Fisiológica , Ratos , Razão Sinal-Ruído , Software
16.
Methods Mol Biol ; 2216: 591-610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476026

RESUMO

Renal hypoxia is generally accepted as a key pathophysiologic event in acute kidney injury of various origins and has also been suggested to play a role in the development of chronic kidney disease. Here we describe step-by-step data analysis protocols for MRI monitoring of renal oxygenation in rodents via the deoxyhemoglobin concentration sensitive MR parameters T2* and T2-a contrast mechanism known as the blood oxygenation level dependent (BOLD) effect.This chapter describes how to use the analysis tools provided by vendors of animal and clinical MR systems, as well as how to develop an analysis software. Aspects covered are: data quality checks, data exclusion, model fitting, fitting algorithm, starting values, effects of multiecho imaging, and result validation.This chapter is based upon work from the PARENCHIMA COST Action, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis.


Assuntos
Biomarcadores/análise , Meios de Contraste/química , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Monitorização Fisiológica/métodos , Oxigênio/sangue , Algoritmos , Animais , Consumo de Oxigênio , Software
17.
Theranostics ; 11(6): 2490-2504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456555

RESUMO

Background: Magnetic resonance imaging (MRI) is indispensable for diagnosing neurological conditions such as multiple sclerosis (MS). MRI also supports decisions regarding the choice of disease-modifying drugs (DMDs). Determining in vivo tissue concentrations of DMDs has the potential to become an essential clinical tool for therapeutic drug monitoring (TDM). The aim here was to examine the feasibility of fluorine-19 (19F) MR methods to detect the fluorinated DMD teriflunomide (TF) during normal and pathological conditions. Methods: We used 19F MR spectroscopy to detect TF in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) in vivo. Prior to the in vivo investigations we characterized the MR properties of TF in vitro. We studied the impact of pH and protein binding as well as MR contrast agents. Results: We could detect TF in vivo and could follow the 19F MR signal over different time points of disease. We quantified TF concentrations in different tissues using HPLC/MS and showed a significant correlation between ex vivo TF levels in serum and the ex vivo19F MR signal. Conclusion: This study demonstrates the feasibility of 19F MR methods to detect TF during neuroinflammation in vivo. It also highlights the need for further technological developments in this field. The ultimate goal is to add 19F MR protocols to conventional 1H MRI protocols in clinical practice to guide therapy decisions.


Assuntos
Crotonatos/metabolismo , Radioisótopos de Flúor/metabolismo , Flúor/metabolismo , Hidroxibutiratos/metabolismo , Inflamação/diagnóstico , Nitrilas/metabolismo , Toluidinas/metabolismo , Animais , Meios de Contraste/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/diagnóstico , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Imagem por Ressonância Magnética de Flúor-19/métodos , Inflamação/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/metabolismo , Ratos
18.
Magn Reson Med ; 85(1): 334-345, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32710578

RESUMO

PURPOSE: Examine the feasibility of characterizing the regulation of renal oxygenation using high-temporal-resolution monitoring of the T2∗ response to a step-like oxygenation stimulus. METHODS: For T2∗ mapping, multi-echo gradient-echo imaging was used (temporal resolution = 9 seconds). A step-like renal oxygenation challenge was applied involving sequential exposure to hyperoxia (100% O2 ), hypoxia (10% O2 + 90% N2 ), and hyperoxia (100% O2 ). In vivo experiments were performed in healthy rats (N = 10) and in rats with bilateral ischemia-reperfusion injury (N = 4). To assess the step response of renal oxygenation, a second-order exponential model was used (model parameters: amplitude [A], time delay [Δt], damping constant [D], and period of the oscillation [T]) for renal cortex, outer stripe of the outer medulla, inner stripe of the outer medulla, and inner medulla. RESULTS: The second-order exponential model permitted us to model the exponential T2∗ recovery and the superimposed T2∗ oscillation following renal oxygenation stimulus. The in vivo experiments revealed a difference in Douter medulla between healthy controls (D < 1, indicating oscillatory recovery) and ischemia-reperfusion injury (D > 1, reflecting aperiodic recovery). The increase in Douter medulla by a factor of 3.7 (outer stripe of the outer medulla) and 10.0 (inner stripe of the outer medulla) suggests that this parameter might be rather sensitive to (patho)physiological oxygenation changes. CONCLUSION: This study demonstrates the feasibility of monitoring the dynamic oxygenation response of renal tissues to a step-like oxygenation challenge using high-temporal-resolution T2∗ mapping. Our results suggest that the implemented system analysis approach may help to unlock questions regarding regulation of renal oxygenation, with the ultimate goal of providing imaging means for diagnostics and therapy of renal diseases.


Assuntos
Hiperóxia , Traumatismo por Reperfusão , Animais , Hiperóxia/diagnóstico por imagem , Hipóxia , Rim/diagnóstico por imagem , Córtex Renal/diagnóstico por imagem , Medula Renal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Oxigênio , Ratos
19.
JCI Insight ; 5(21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33148886

RESUMO

The brain ventricles are part of the fluid compartments bridging the CNS with the periphery. Using MRI, we previously observed a pronounced increase in ventricle volume (VV) in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here, we examined VV changes in EAE and MS patients in longitudinal studies with frequent serial MRI scans. EAE mice underwent serial MRI for up to 2 months, with gadolinium contrast as a proxy of inflammation, confirmed by histopathology. We performed a time-series analysis of clinical and MRI data from a prior clinical trial in which RRMS patients underwent monthly MRI scans over 1 year. VV increased dramatically during preonset EAE, resolving upon clinical remission. VV changes coincided with blood-brain barrier disruption and inflammation. VV was normal at the termination of the experiment, when mice were still symptomatic. The majority of relapsing-remitting MS (RRMS) patients showed dynamic VV fluctuations. Patients with contracting VV had lower disease severity and a shorter duration. These changes demonstrate that VV does not necessarily expand irreversibly in MS but, over short time scales, can expand and contract. Frequent monitoring of VV in patients will be essential to disentangle the disease-related processes driving short-term VV oscillations from persistent expansion resulting from atrophy.


Assuntos
Encéfalo/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Inflamação/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Animais , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Estudos Retrospectivos
20.
Magn Reson Med ; 84(5): 2684-2701, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32447779

RESUMO

PURPOSE: The use of surface radiofrequency (RF) coils is common practice to boost sensitivity in (pre)clinical MRI. The number of transceive surface RF coils is rapidly growing due to the surge in cryogenically cooled RF technology and ultrahigh-field MRI. Consequently, there is an increasing need for effective correction of the excitation field ( B1+ ) inhomogeneity inherent in these coils. Retrospective B1 correction permits quantitative MRI, but this usually requires a pulse sequence-specific analytical signal intensity (SI) equation. Such an equation is not available for fast spin-echo (Rapid Acquisition with Relaxation Enhancement, RARE) MRI. Here we present, test, and validate retrospective B1 correction methods for RARE. METHODS: We implemented the commonly used sensitivity correction and developed an empirical model-based method and a hybrid combination of both. Tests and validations were performed with a cryogenically cooled RF probe and a single-loop RF coil. Accuracy of SI quantification and T1 contrast were evaluated after correction. RESULTS: The three described correction methods achieved dramatic improvements in B1 homogeneity and significantly improved SI quantification and T1 contrast, with mean SI errors reduced from >40% to >10% following correction in all cases. Upon correction, images of phantoms and mouse heads demonstrated homogeneity comparable to that of images acquired with a volume resonator. This was quantified by SI profile, SI ratio (error < 10%), and percentage of integral uniformity (PIU > 80% in vivo and ex vivo compared to PIU > 87% with the reference RF coil). CONCLUSION: This work demonstrates the efficacy of three B1 correction methods tailored for transceive surface RF probes and RARE MRI. The corrected images are suitable for quantification and show comparable results between the three methods, opening the way for T1 measurements and X-nuclei quantification using surface transceiver RF coils. This approach is applicable to other MR techniques for which no analytical SI exists.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Animais , Camundongos , Imagens de Fantasmas , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA