Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 105: 117734, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677112

RESUMO

Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the ß-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.


Assuntos
Antimaláricos , Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Harmina , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Harmina/farmacologia , Harmina/química , Harmina/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Plasmodium falciparum/efeitos dos fármacos , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Testes de Sensibilidade Parasitária
2.
Acta Pharm ; 73(4): 537-558, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147482

RESUMO

Here we present the synthesis and evaluation of the biological activity of new hybrid compounds, ureido-type (UT) harmiquins, based on chloroquine (CQ) or mefloquine (MQ) scaffolds and ß-carboline alkaloid harmine against cancer cell lines and Plasmodium falciparum. The hybrids were prepared from the corresponding amines by 1,1'-carbonyldiimidazole (CDI)-mediated synthesis. In vitro evaluation of the biological activity of the title compounds revealed two hit compounds. Testing of the antiproliferative activity of the new UT harmiquins, and previously prepared triazole-(TT) and amide-type (AT) CQ-based harmiquins, against a panel of human cell lines, revealed TT harmiquine 16 as the most promising compound, as it showed pronounced and selective activity against the tumor cell line HepG2 (IC 50 = 5.48 ± 3.35 µmol L-1). Screening of the antiplasmodial activities of UT harmiquins against erythrocytic stages of the Plasmodium life cycle identified CQ-based UT harmiquine 12 as a novel antiplasmodial hit because it displayed low IC 50 values in the submicromolar range against CQ-sensitive and resistant strains (IC 50 0.06 ± 0.01, and 0.19 ± 0.02 µmol L-1, respectively), and exhibited high selectivity against Plasmodium, compared to mammalian cells (SI = 92).


Assuntos
Antimaláricos , Cloroquina , Mefloquina , Humanos , Antimaláricos/farmacologia , Linhagem Celular Tumoral , Cloroquina/farmacologia , Mefloquina/farmacologia , Testes de Sensibilidade Parasitária
3.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012590

RESUMO

Cancer and malaria are both global health threats. Due to the increase in the resistance to the known drugs, research on new active substances is a priority. Here, we present the design, synthesis, and evaluation of the biological activity of harmicens, hybrids composed of covalently bound harmine/ß-carboline and ferrocene scaffolds. Structural diversity was achieved by varying the type and length of the linker between the ß-carboline ring and ferrocene, as well as its position on the ß-carboline ring. Triazole-type harmicens were prepared using Cu(I)-catalyzed azide-alkyne cycloaddition, while the synthesis of amide-type harmicens was carried out by applying a standard coupling reaction. The results of in vitro biological assays showed that the harmicens exerted moderate antiplasmodial activity against the erythrocytic stage of P. falciparum (IC50 in submicromolar and low micromolar range) and significant and selective antiproliferative activity against the MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range, SI > 5.9). Cell localization experiments showed different localizations of nonselective harmicene 36 and HCT116-selective compound 28, which clearly entered the nucleus. A cell cycle analysis revealed that selective harmicene 28 had already induced G1 cell cycle arrest after 24 h, followed by G2/M arrest with a concomitant drastic reduction in the percentage of cells in the S phase, whereas the effect of nonselective compound 36 on the cell cycle was much less pronounced, which agreed with their different localizations within the cell.


Assuntos
Antineoplásicos , Malária Falciparum , Antineoplásicos/química , Apoptose , Carbolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular , Harmina , Humanos , Metalocenos/farmacologia , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 238: 114408, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551033

RESUMO

Malaria remains one of the major health problems worldwide. The lack of an effective vaccine and the increasing resistance of Plasmodium to the approved antimalarial drugs demands the development of novel antiplasmodial agents that can effectively prevent and/or treat this disease. Harmiquins represent hybrids that combine two moieties with different mechanisms of antiplasmodial activity in one molecule, i.e., a chloroquine (CQ) scaffold, known to inhibit heme polymerization and a ß-carboline ring capable of binding to P. falciparum heat shock protein 90 (PfHsp90). Here we present their synthesis, evaluation of biological activity and potential mechanism of action. The synthesized hybrids differed in the type of linker employed (triazole ring or amide bond) and in the position of the substitution on the ß-carboline core of harmine. The antiplasmodial activity of harmiquins was evaluated against the erythrocytic stage of the Plasmodium life cycle, and their cytotoxic effect was tested on HepG2 cells. The results showed that harmiquins exerted remarkable activity against both CQ-sensitive (Pf3D7) and CQ-resistant (PfDd2, PfK1, and Pf7G8). P. falciparum strains. The most active compound, harmiquine 32, displayed single-digit nanomolar IC50 value against Pf3D7 (IC50 = 2.0 ± 0.3 nM). Importantly, it also showed significantly higher activity than CQ against the resistant Plasmodium strains and had a very high selectivity index (4450). Harmiquins may act through the inhibition of heme polymerization and binding to the ATP binding site of the PfHsp90, which would explain their increased activity against the CQ-resistant Plasmodium strains. These results establish harmiquins as valuable antiplasmodial hits for future optimization.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/química , Cloroquina/farmacologia , Harmina/farmacologia , Heme , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
5.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770906

RESUMO

As cancer remains one of the major health burdens worldwide, novel agents, due to the development of resistance, are needed. In this work, we designed and synthesized harmirins, which are hybrid compounds comprising harmine and coumarin scaffolds, evaluated their antiproliferative activity, and conducted cell localization and cell cycle analysis experiments. Harmirins were prepared from the corresponding alkynes and azides under mild reaction conditions using Cu(I) catalyzed azide-alkyne cycloaddition, leading to the formation of the 1H-1,2,3-triazole ring. Antiproliferative activity of harmirins was evaluated in vitro against four human cancer cell lines (MCF-7, HCT116, SW620, and HepG2) and one human non-cancer cell line (HEK293T). The most pronounced activities were exerted against MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range), while the most selective harmirins were 5b and 12b, substituted at C-3 and O-7 of the ß-carboline core and bearing methyl substituent at position 6 of the coumarin ring (SIs > 7.2). Further experiments demonstrated that harmirin 12b is localized exclusively in the cytoplasm. In addition, it induced a strong G1 arrest and reduced the percentage of cells in the S phase, suggesting that it might exert its antiproliferative activity through inhibition of DNA synthesis, rather than DNA damage. In conclusion, harmirin 12b is a novel harmine and coumarin hybrid with significant antiproliferative activity and warrants further evaluation as a potential anticancer agent.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Cumarínicos/química , Harmina/síntese química , Harmina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Harmina/análogos & derivados , Humanos , Estrutura Molecular
6.
Eur J Med Chem ; 224: 113687, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34274829

RESUMO

The rise of the resistance of the malaria parasite to the currently approved therapy urges the discovery and development of new efficient agents. Previously we have demonstrated that harmicines, hybrid compounds composed from ß-carboline alkaloid harmine and cinnamic acid derivatives, linked via either triazole or amide bond, exert significant antiplasmodial activity. In this paper, we report synthesis, antiplasmodial activity and cytotoxicity of expanded series of novel triazole- and amide-type harmicines. Structure-activity relationship analysis revealed that amide-type harmicines 27, prepared at N-9 of the ß-carboline core, exhibit superior potency against both erythrocytic stage of P. falciparum and hepatic stages of P. berghei. Notably, harmicine 27a, m-(trifluoromethyl)cinnamic acid derivative, exhibited the most favourable selectivity index (SI = 1105). Molecular dynamics simulations revealed the ATP binding site of P. falciparum heat shock protein 90 as a druggable binding location, confirmed the usefulness of the harmine's N-9 substitution and identified favourable N-H … π interactions involving Lys45 and the aromatic phenyl unit in the attached cinnamic acid fragment as crucial for the enhanced biological activity. Thus, those compounds were identified as promising and valuable leads for further derivatization in the search of novel, more efficient antiplasmodial agents.


Assuntos
Antimaláricos/síntese química , Alcaloides Indólicos/química , Amidas/química , Antimaláricos/farmacologia , Sítios de Ligação , Eritrócitos/parasitologia , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Alcaloides Indólicos/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Simulação de Dinâmica Molecular , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA