Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445993

RESUMO

The optical floating zone crystal growth technique is a well-established method for obtaining large, high-purity single crystals. While the floating zone method has been constantly evolving for over six decades, the development of high-pressure (up to 1000 bar) growth systems has only recently been realized via the combination of laser-based heating sources with an all-metal chamber. While our inaugural high-pressure laser floating zone furnace design demonstrated the successful growth of new volatile and metastable phases, the furnace design faces several limitations with imaging quality, heating profile control, and chamber cooling power. Here, we present a second-generation design of the high-pressure laser floating zone furnace, "Laser Optical Kristallmacher II" (LOKII), and demonstrate that this redesign facilitates new advances in crystal growth by highlighting several exemplar materials: α-Fe2O3, ß-Ga2O3, and La2CuO4+δ. Notably, for La2CuO4+δ, we demonstrate the feasibility and long-term stability of traveling solvent floating zone growth under a record pressure of 700 bar.

2.
Adv Sci (Weinh) ; 11(2): e2304698, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946681

RESUMO

The notion that phonons can carry pseudo-angular momentum has many major consequences, including topologically protected phonon chirality, Berry curvature of phonon band structure, and the phonon Hall effect. When a phonon is resonantly coupled to an orbital state split by its crystal field environment, a so-called vibronic bound state forms. Here, a vibronic bound state is observed in NaYbSe2 , a quantum spin liquid candidate. In addition, field and polarization dependent Raman microscopy is used to probe an angular momentum transfer of ΔJz = ±â„ between phonons and the crystalline electric field mediated by the vibronic bound stat. This angular momentum transfer between electronic and lattice subsystems provides new pathways for selective optical addressability of phononic angular momentum via electronic ancillary states.

3.
Phys Rev Lett ; 129(23): 237202, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563188

RESUMO

Competition among exchange interactions is able to induce novel spin correlations on a bipartite lattice without geometrical frustration. A prototype example is the spiral spin liquid, which is a correlated paramagnetic state characterized by subdimensional degenerate propagation vectors. Here, using spectral graph theory, we show that spiral spin liquids on a bipartite lattice can be approximated by a further-neighbor model on the corresponding line-graph lattice that is nonbipartite, thus broadening the space of candidate materials that may support the spiral spin liquid phases. As illustrations, we examine neutron scattering experiments performed on two spinel compounds, ZnCr_{2}Se_{4} and CuInCr_{4}Se_{8}, to demonstrate the feasibility of this new approach and expose its possible limitations in experimental realizations.

4.
Phys Rev Lett ; 127(26): 266401, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35029485

RESUMO

We report angle resolved photoemission experiments on a newly discovered family of kagome metals RV_{6}Sn_{6} (R=Gd, Ho). Intrinsic bulk states and surface states of the vanadium kagome layer are differentiated from those of other atomic sublattices by the real-space resolution of the measurements with a small beam spot. Characteristic Dirac cone, saddle point, and flat bands of the kagome lattice are observed. Our results establish the two-dimensional (2D) kagome surface states as a new platform to investigate the intrinsic kagome physics.

5.
Phys Rev Lett ; 125(16): 167201, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33124855

RESUMO

We present a comprehensive neutron scattering study of the breathing pyrochlore magnet LiGaCr_{4}S_{8}. We observe an unconventional magnetic excitation spectrum with a separation of high- and low-energy spin dynamics in the correlated paramagnetic regime above a spin-freezing transition at 12(2) K. By fitting to magnetic diffuse-scattering data, we parametrize the spin Hamiltonian. We find that interactions are ferromagnetic within the large and small tetrahedra of the breathing pyrochlore lattice, but antiferromagnetic further-neighbor interactions are also essential to explain our data, in qualitative agreement with density-functional-theory predictions [Ghosh et al., npj Quantum Mater. 4, 63 (2019)2397-464810.1038/s41535-019-0202-z]. We explain the origin of geometrical frustration in LiGaCr_{4}S_{8} in terms of net antiferromagnetic coupling between emergent tetrahedral spin clusters that occupy a face-centered-cubic lattice. Our results provide insight into the emergence of frustration in the presence of strong further-neighbor couplings, and a blueprint for the determination of magnetic interactions in classical spin liquids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA