Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 189(2): 644-665, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642548

RESUMO

The Solanaceae or "nightshade" family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family's small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data. We applied a suite of computational tools to predict and annotate two major sRNA classes: (1) microRNAs (miRNAs), typically 20- to 22-nucleotide (nt) RNAs generated from a hairpin precursor and functioning in gene silencing and (2) short interfering RNAs (siRNAs), including 24-nt heterochromatic siRNAs typically functioning to repress repetitive regions of the genome via RNA-directed DNA methylation, as well as secondary phased siRNAs and trans-acting siRNAs generated via miRNA-directed cleavage of a polymerase II-derived RNA precursor. Our analyses described thousands of sRNA loci, including poorly understood clusters of 22-nt siRNAs that accumulate during viral infection. The birth, death, expansion, and contraction of these sRNA loci are dynamic evolutionary processes that characterize the Solanaceae family. These analyses indicate that individuals within the same genus share similar sRNA landscapes, whereas comparisons between distinct genera within the Solanaceae reveal relatively few commonalities.


Assuntos
MicroRNAs , RNA Interferente Pequeno , Solanaceae , Metilação de DNA , RNA Polimerases Dirigidas por DNA/genética , Inativação Gênica , MicroRNAs/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Solanaceae/genética
2.
Plant Direct ; 6(2): e385, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35224420

RESUMO

Plants will face increased heat stress due to rising global temperatures. Heat stress affects plant reproductive development and decreases productivity; however, the underlying molecular mechanisms of these processes are poorly characterized. Plant small RNAs (sRNAs) have important regulatory roles in plant reproductive development following abiotic stress responses. We generated sRNA transcriptomes of reproductive bud stages at three different time points to identify sRNA-mediated pathways responsive to heat stress in flax (Linum usitatissimum). With added sRNA transcriptomes of vegetative tissues, we comprehensively annotated miRNA and phasiRNA-encoding genes (PHAS) in flax. We identified 173 miRNA genes, of which 42 are newly annotated. Our analysis revealed that 141 miRNA genes were differentially accumulated between tissue types, while 18 miRNA genes were differentially accumulated in reproductive tissues following heat stress, including members of miR482/2118 and miR2275 families, known triggers of reproductive phasiRNAs. Furthermore, we identified 68 21-PHAS flax loci from protein-coding and noncoding regions, four 24-PHAS loci triggered by miR2275, and 658 24-PHAS-like loci with unknown triggers, derived mostly from noncoding regions. The reproductive phasiRNAs are mostly downregulated in response to heat stress. Overall, we found that several previously unreported miRNAs and phasiRNAs are responsive to heat stress in flax reproductive tissues.

3.
Nat Commun ; 12(1): 4941, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400639

RESUMO

Plant small RNAs are important regulatory elements that fine-tune gene expression and maintain genome integrity by silencing transposons. Reproductive organs of monocots produce abundant phased, small interfering RNAs (phasiRNAs). The 21-nt reproductive phasiRNAs triggered by miR2118 are highly enriched in pre-meiotic anthers, and have been found in multiple eudicot species, in contrast with prior reports of monocot specificity. The 24-nt reproductive phasiRNAs are triggered by miR2275, and are highly enriched during meiosis in many angiosperms. Here, we report the widespread presence of the 21-nt reproductive phasiRNA pathway in eudicots including canonical and non-canonical microRNA (miRNA) triggers of this pathway. In eudicots, these 21-nt phasiRNAs are enriched in pre-meiotic stages, a spatiotemporal distribution consistent with that of monocots and suggesting a role in anther development. Although this pathway is apparently absent in well-studied eudicot families including the Brassicaceae, Solanaceae and Fabaceae, our work in eudicots supports an earlier singular finding in spruce, a gymnosperm, indicating that the pathway of 21-nt reproductive phasiRNAs emerged in seed plants and was lost in some lineages.


Assuntos
Magnoliopsida/metabolismo , Nucleotídeos/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/metabolismo , Sementes/metabolismo , Fragaria/genética , Fragaria/metabolismo , Regulação da Expressão Gênica de Plantas , Meiose , MicroRNAs/genética , Filogenia , Picea/genética , Proteínas de Plantas/genética , RNA de Cadeia Dupla/metabolismo , Solanaceae/metabolismo , Transcriptoma
4.
Plant J ; 107(5): 1332-1345, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34160111

RESUMO

Small RNAs play important roles in plant growth and development by modulating expression of genes and transposons. In many flowering plant species, male reproductive organs, the anthers, produce abundant phased small interfering RNAs (phasiRNAs). Two classes of reproductive phasiRNAs are generally known, mostly from monocots: (i) pre-meiotic 21-nucleotide (nt) phasiRNAs triggered by miR2118 and (ii) meiotic 24-nt phasiRNAs triggered by miR2275. Here, we describe conserved and non-conserved triggers of 24-nt phasiRNAs in several eudicots. We found that the abundant 24-nt phasiRNAs in the basal eudicot columbine (Aquilegia coerulea) are produced by the canonical trigger miR2275, as well as by other non-canonical triggers, miR482/2118 and miR14051. These triggering microRNAs (miRNAs) are localized in microspore mother cells and tapetal cells of meiotic and post-meiotic stage anthers. Furthermore, we identified a lineage-specific trigger (miR11308) of 24-nt phasiRNAs and an expanded number of 24-PHAS loci in wild strawberry (Fragaria vesca). We validated the presence of the miR2275-derived 24-nt phasiRNA pathway in rose (Rosa chinensis). Finally, we evaluated all eudicots that have been validated for the presence of 24-nt phasiRNAs as possible model systems in which to study the biogenesis and function of 24-nt phasiRNAs. We conclude that columbine (Aquilegia coerulea) would be a strong model because of its extensive number of 24-PHAS loci and its diversity of trigger miRNAs.


Assuntos
Aquilegia/genética , Magnoliopsida/genética , MicroRNAs/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Fragaria/genética , Loci Gênicos/genética , Meiose/genética , Especificidade de Órgãos
5.
Plant Dis ; 105(10): 3141-3146, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33616428

RESUMO

The isoflavones are a group of plant secondary metabolites primarily synthesized in legumes and are known for their role in improving human health and plant disease resistance. The isoflavones, especially genistein, act as precursors for the production of phytoalexins, which may induce broad-spectrum disease resistance in plants. In this study, we screened transgenic rice lines expressing the isoflavone synthase (GmIFS1) gene from soybean for rice blast (Magnaporthe oryzae) resistance. Two homozygous transgenic lines (I2 and I10), based on single copy gene integration, were identified. The expression of GmIFS1 in transgenic lines was confirmed by quantitative real-time PCR. Genistein was detected in the transgenic lines using liquid chromatography with tandem mass spectrometry. Subsequently, the transgenic lines were evaluated against the rice blast pathogen, isolate YJ54 (race IB-54). The results indicated that >60% of the plants in both the lines (I2 and I10) showed resistance against the blast pathogen. The progenies of one of the resistant transgenic lines (I10) also showed >65% resistance against rice blast. The resistance of these transgenic lines against rice blast may be attributed to the synthesis of isoflavone (genistein) in rice.


Assuntos
Fabaceae , Magnaporthe , Oryza , Ascomicetos , Magnaporthe/genética , Oryza/genética , Oxigenases , Plantas Geneticamente Modificadas/genética , Glycine max/genética
6.
Plant Physiol ; 184(3): 1407-1423, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917771

RESUMO

Two classes of premeiotic (21-nucleotides [nt]) and meiotic (24-nt) phased small interfering RNAs (phasiRNAs) and their patterns of accumulation have been described in maize (Zea mays) and rice (Oryza sativa) anthers. Their precise function remains unclear, but studies have shown that they support male fertility. The important role of phasiRNAs in anthers underpins our present study to characterize these small RNAs in wheat (Triticum aestivum) and barley (Hordeum vulgare) anthers. We staged anthers at every 0.2 mm of development for one wheat and two barley varieties. We isolated premeiotic (0.2, 0.4, and 0.6 mm), meiotic (0.8, 1.0, and 1.4 mm), and postmeiotic (1.8 mm) anthers, for which we then investigated accumulation patterns of RNAs, including reproductive phasiRNAs. We annotated a total of 12,821 and 2,897 PHAS loci in the wheat and barley genomes, respectively. By comparing the total number of PHAS loci in genomes of maize, rice, barley, and wheat, we identified an expansion of reproductive PHAS loci in the genomes of Poaceae subfamilies from Panicoideae to Oryzoideae and to Poideae. In addition to the two classes of premeiotic (21-nt) and meiotic (24-nt) phasiRNAs, previously described in maize and rice anthers, we characterized a group of 24-nt phasiRNAs that accumulate in premeiotic anthers. The absence of premeiotic 24-nt phasiRNAs in maize and rice suggests a divergence in grass species of the Poideae subfamily. Additionally, we performed a gene coexpression analysis describing the regulation of phasiRNA biogenesis in wheat and barley anthers. We highlight Argonaute 9 (AGO9) and Argonaute 6 (AGO6) as candidate binding partners of premeiotic and meiotic 24-nt phasiRNAs, respectively.


Assuntos
Flores/crescimento & desenvolvimento , Hordeum/genética , Oryza/genética , RNA de Plantas , Reprodução/genética , Triticum/genética , Zea mays/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Flores/genética , Regulação da Expressão Gênica de Plantas , Hordeum/crescimento & desenvolvimento , Meiose/fisiologia , Oryza/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
7.
Proc Natl Acad Sci U S A ; 117(26): 15305-15315, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541052

RESUMO

Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). In Brassica rapa, RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression during B. rapa seed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues.


Assuntos
Brassica rapa/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , RNA de Plantas , Sementes/crescimento & desenvolvimento , Alelos , Arabidopsis/metabolismo , Brassica rapa/genética , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno , Sementes/genética , Sementes/metabolismo
8.
Nat Commun ; 10(1): 627, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733503

RESUMO

Small RNAs are key regulators in plant growth and development. One subclass, phased siRNAs (phasiRNAs) require a trigger microRNA for their biogenesis. In grasses, two pathways yield abundant phasiRNAs during anther development; miR2275 triggers one class, 24-nt phasiRNAs, coincident with meiosis, while a second class of 21-nt phasiRNAs are present in premeiotic anthers. Here we report that the 24-nt phasiRNA pathway is widely present in flowering plants, indicating that 24-nt reproductive phasiRNAs likely originated with the evolutionary emergence of anthers. Deep comparative genomic analyses demonstrated that this miR2275/24-nt phasiRNA pathway is widely present in eudicots plants, however, it is absent in legumes and in the model plant Arabidopsis, demonstrating a dynamic evolutionary history of this pathway. In Solanaceae species, 24-nt phasiRNAs were observed, but the miR2275 trigger is missing and some loci displaying 12-nt phasing. Both the miR2275-triggered and Solanaceae 24-nt phasiRNAs are enriched in meiotic stages, implicating these phasiRNAs in anther and/or pollen development, a spatiotemporal pattern consistent in all angiosperm lineages that deploy them.


Assuntos
Magnoliopsida/genética , Magnoliopsida/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Solanaceae/genética , Solanaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA