Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Rep ; 29(1): 2371173, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38972297

RESUMO

Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.


Assuntos
Ciclo Celular , Oxirredução , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Humanos , Proliferação de Células , Transdução de Sinais , Dano ao DNA , Animais
2.
Toxicology ; 488: 153460, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796712

RESUMO

Cannabidiol (CBD) and cannabigerol (CBG) are the two main non-psychotropic phytocannabinoids with high application potential in drug development. Both substances are redox-active and are intensively investigated for their cytoprotective and antioxidant action in vitro. In this study, we focused on an in vivo safety evaluation and the effect of CBD and CBG on the redox status in rats in a 90-d experiment. The substances were administered orogastrically in a dose of 0.66 mg synthetic CBD or 0.66 mg/1.33 mg CBG/kg/day. CBD produced no changes in the red or white blood count or biochemical blood parameters in comparison to the control. No deviations in the morphology or histology of the gastrointestinal tract and liver were observed. After 90 d of CBD exposure, a significant improvement in redox status was found in the blood plasma and liver. The concentration of malondialdehyde and carbonylated proteins was reduced compared to the control. In contrast to CBD, total oxidative stress was significantly increased and this was accompanied by an elevated level of malondialdehyde and carbonylated proteins in CBG-treated animals. Hepatotoxic (regressive changes) manifestations, disruption in white cell count, and alterations in the ALT activity, level of creatinine and ionized calcium were also found in CBG-treated animals. Based on liquid chromatography-mass spectrometry analysis, CBD/CBG accumulated in rat tissues (in the liver, brain, muscle, heart, kidney and skin) at a low ng level per gram. Both CBD and CBG molecular structures include a resorcinol moiety. In CBG, there is an extra dimethyloctadienyl structural pattern, which is most likely responsible for the disruption to the redox status and hepatic environment. The results are valuable to further investigation of the effects of CBD on redox status and should contribute towards opening up critical discussion on the applicability of other non-psychotropic cannabinoids.


Assuntos
Canabidiol , Canabinoides , Ratos , Animais , Canabidiol/toxicidade , Canabinoides/toxicidade , Cálcio , Oxirredução
3.
Biochim Biophys Acta Rev Cancer ; 1877(3): 188705, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276232

RESUMO

One of the characteristics of cancer cells important for tumorigenesis is their metabolic plasticity. Indeed, in various stress conditions, cancer cells can reshape their metabolic pathways to support the increased energy request due to continuous growth and rapid proliferation. Moreover, selective pressures in the tumor microenvironment, such as hypoxia, acidosis, and competition for resources, force cancer cells to adapt by complete reorganization of their metabolism. In this review, we highlight the characteristics of cancer metabolism and discuss its clinical significance, since overcoming metabolic plasticity of cancer cells is a key objective of modern cancer therapeutics and a better understanding of metabolic reprogramming may lead to the identification of possible targets for cancer therapy.


Assuntos
Neoplasias , Microambiente Tumoral , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Humanos , Redes e Vias Metabólicas , Neoplasias/patologia
4.
Biomed Res Int ; 2021: 6800294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746306

RESUMO

The main dose-limiting side effect of cisplatin is nephrotoxicity. The utilization of cisplatin is an issue of balancing tumour toxicity versus platinum-induced nephrotoxicity. In this study, we focused on intraorgan distribution of common essential trace elements zinc, copper, and iron in healthy mouse kidneys and distribution of platinum after cisplatin treatment. Renal distribution in 12 nontreated Nu-Nu mice (males) was assessed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Furthermore, 9 Nu-Nu mice were treated with cisplatin. The order of elements concentration in kidneys was as follows: Fe > Zn > Cu. All three metals showed the higher concentrations at the cortex and medulla (28.60, 3.35, and 93.83 µg/g for Zn, Cu, and Fe, respectively) and lower concentration at the pelvis and the urinary tract (20.20, 1.93, and 62.48 µg/g for Zn, Cu, and Fe, respectively). No statistically significant difference between cortex and medulla was observed for these elements. After platinum treatment, the concentration of platinum in kidneys was enhanced more than 60-times, p < 0.001. Platinum significantly showed the highest accumulation in cortex (2.11 µg/g) with a gradient distribution. Platinum was less accumulated in medulla and pelvis than in cortex, and the lowest accumulation occurred in the urinary tract (1.13 µg/g). Image processing has been successfully utilized to colocalize metal distribution using LA-ICP-MS and histological samples images.


Assuntos
Cisplatino/toxicidade , Rim/metabolismo , Rim/patologia , Animais , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Cobre/análise , Humanos , Ferro/análise , Rim/efeitos dos fármacos , Masculino , Espectrometria de Massas/métodos , Camundongos , Camundongos Nus , Células PC-3 , Platina/análise , Análise Espectral/métodos , Zinco/análise
5.
ACS Appl Mater Interfaces ; 13(27): 31355-31370, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34218662

RESUMO

The development of cancer resistance continues to represent a bottleneck of cancer therapy. It is one of the leading factors preventing drugs to exhibit their full therapeutic potential. Consequently, it reduces the efficacy of anticancer therapy and causes the survival rate of therapy-resistant patients to be far from satisfactory. Here, an emerging strategy for overcoming drug resistance is proposed employing a novel two-dimensional (2D) nanomaterial polysiloxane (PSX). We have reported on the synthesis of PSX nanosheets (PSX NSs) and proved that they have favorable properties for biomedical applications. PSX NSs evinced unprecedented cytocompatibility up to the concentration of 300 µg/mL, while inducing very low level of red blood cell hemolysis and were found to be highly effective for anticancer drug binding. PSX NSs enhanced the efficacy of the anticancer drug doxorubicin (DOX) by around 27.8-43.4% on average and, interestingly, were found to be especially effective in the therapy of drug-resistant tumors, improving the effectiveness of up to 52%. Fluorescence microscopy revealed improved retention of DOX within the drug-resistant cells when bound on PSX NSs. DOX bound on the surface of PSX NSs, i.e., PSX@DOX, improved, in general, the DOX cytotoxicity in vitro. More importantly, PSX@DOX reduced the growth of DOX-resistant tumors in vivo with 3.5 times better average efficiency than the free drug. Altogether, this paper represents an introduction of a new 2D nanomaterial derived from silicane and pioneers its biomedical application. As advances in the field of material synthesis are rapidly progressing, novel 2D nanomaterials with improved properties are being synthesized and await thorough exploration. Our findings further provide a better understanding of the mechanisms involved in the cancer resistance and can promote the development of a precise cancer therapy.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Siloxanas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/uso terapêutico , Feminino , Humanos , Teste de Materiais , Camundongos , Nanoestruturas/química , Siloxanas/química
6.
Int J Mol Sci ; 22(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671869

RESUMO

Cancer-associated fibroblasts (CAFs) are one of the most abundant and critical components of the tumor stroma. CAFs can impact many important steps of cancerogenesis and may also influence treatment resistance. Some of these effects need the direct contact of CAFs and cancer cells, while some involve paracrine signals. In this study, we investigated the ability of head and neck squamous cell carcinomas (HNSCC) patient-derived CAFs to promote or inhibit the colony-forming ability of HNSCC cells. The effect of cisplatin on this promoting or inhibiting influence was also studied. The subsequent analysis focused on changes in the expression of genes associated with cancer progression. We found that cisplatin response in model HNSCC cancer cells was modified by coculture with CAFs, was CAF-specific, and different patient-derived CAFs had a different "sensitizing ratio". Increased expression of VEGFA, PGE2S, COX2, EGFR, and NANOG in cancer cells was characteristic for the increase of resistance. On the other hand, CCL2 expression was associated with sensitizing effect. Significantly higher amounts of cisplatin were found in CAFs derived from patients who subsequently experienced a recurrence. In conclusion, our results showed that CAFs could promote and/or inhibit colony-forming capability and cisplatin resistance in HNSCC cells via paracrine effects and subsequent changes in gene expression of cancer-associated genes in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Comunicação Parácrina/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA