Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 175472, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142414

RESUMO

Acetaminophen (APAP) is a well-known type of over-the-counter painkiller and is frequently found in surface waterbodies, causing hepatotoxicity and skin irritation. Due to its persistence and chronic effects on the environment, innovative solutions must be provided to decompose APAP effectively. Successfully, innovative catalysts of tungsten-modified iron oxides (TF) were developed via a combustion method and thoroughly characterized using SEM, TEM, XRD, XPS, a porosimetry analysis, Mössbauer spectroscopy, VSM magnetometry, and EPR. With the synthesis method, tungsten was successfully incorporated into iron oxides to form ferrites and other magnetic iron oxides with a high porosity of 19.7 % and a large surface area of 29.5 m2/g. Also, their catalytic activities for APAP degradation by activating peroxymonosulfate (PMS) were evaluated under various conditions. Under optimal conditions, TF 2.0 showed the highest APAP degradation of 95 % removal with a catalyst loading of 2.0 g/L, initial APAP concentration of 5 mg/L, PMS 6.5 mM, and pH 2.15 at room temperature. No inhibition by solution pHs, alkalinity, and humic acid was observed for APAP degradation. The catalysts also showed chemical and mechanical stability, achieving 100 % degradation of 1 mg/L APAP during reusability tests with three consecutive experiments. These results show that TFs can effectively degrade persistent contaminants of emerging concern in water, offering an impactful contribution to wastewater treatment to protect human health and the ecosystem.

2.
Molecules ; 28(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570787

RESUMO

A novel experimental protocol based on a reverse micellar method is presented for the synthesis of graphene oxide (GO)-based hybrids with spin crossover nanoparticles (SCO NPs) of the 1D iron(II) coordination polymer with the formula [Fe(NH2trz)3](Br2). By introducing different quantities of 0.5% and 1.0% of GO (according to iron(II)) into the aqueous phase, two hybrids, NP4 and NP5, were synthesized, respectively. The morphological homogeneity of the NPs on the surface of the GO flakes is greatly improved in comparison to the pristine [Fe(NH2trz)3](Br2) NPs. From the magnetic point of view and at a low magnetic sweep rate of 1 K/min, a two-step hysteretic behavior is observed for NP4 and NP5, where the onset of the low-temperature second step appeared at 40% and 30% of the HS fraction, respectively. For faster sweep rates of 5-10 K/min, the two steps from the cooling branch are progressively smeared out, and the critical temperatures observed are T1/2↑ = 343 K and T1/2↓ = 288 K, with a thermal width of 55 K for both NP4 and NP5. A Raman laser power-assisted protocol was used to monitor the thermal tolerance of the hybrids, while XPS analysis revealed electronic interactions between the SCO NPs and the GO flakes.

3.
Dalton Trans ; 52(10): 2937-2941, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36825841

RESUMO

A synthetically controllable two-step spin transition was observed in iron(II) spin crossover nanoparticles of the dehydrated one-dimensional coordination polymer [Fe(NH2trz)3]Br2 (NH2trz = 4-amino-1,2,4-triazole) using the reverse micellar method. The change from two-step to one-step hysteretic characteristics succeeded by changing the reaction time.

4.
Nanoscale ; 14(14): 5501-5513, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35342922

RESUMO

A series of Sc-substituted ε-Fe2O3 nanoparticles embedded in a silica matrix were synthesized by a sol-gel process. It was found that the preparation of a pure ε-Fe2O3 phase without any other iron(III) oxide phases as admixtures was achieved for ε-Sc0.1Fe1.9O3 (5 at% of Sc) as documented by analyses of X-ray powder diffraction (XRD) results. Extensive physicochemical characterization of the ε-Sc0.1Fe1.9O3 sample was performed employing transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), magnetization measurements, 57Fe Mössbauer spectroscopy, and electrochemical impedance spectroscopy (EIS). Magnetization vs. temperature plots showed vanishing of the two-step magnetic transition for the Sc-doped ε-Fe2O3 sample; a decrease in the magnetization profile was observed only once upon the change in the temperature. The Sc3+ substitution was found to cause a constriction of the magnetic transition region and a shift of the onset of the magnetic transition to a higher temperature in comparison with the undoped ε-Fe2O3 system. Moreover, upon the introduction of Sc3+ ions in the ε-Fe2O3 crystal lattice, a magnetic hardness was altered accompanied by a decrease in the coercivity. With 57Fe Mössbauer spectroscopy, it was identified that Sc3+ predominantly substitutes Fe3+ in the distorted octahedral A- and B-sites and with almost equivalent occupation probability at both positions. Moreover, the electrochemical measurements confirmed the increase in the resistivity in the Sc-doped ε-Fe2O3 systems. Thus, the results, achieved within the present study, demonstrated an effect of Sc3+ substitution on the preparation purity of ε-Fe2O3 systems without the presence of any other iron(III) oxide admixtures and on the change in its magnetic and electrochemical features, proving their feasible tuning with respect to the requirements of potential future applications.

5.
Dalton Trans ; 50(38): 13227-13231, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34546269

RESUMO

A reverse micelle method was used for the synthesis of water-soluble silica hybrid, spin-crossover (SCO) nanoparticles (NPs). MRI experiments provided temperature dependent T2 values, indicating their potential use as smart MRI agents, while lyophilization of NP dispersions in water yielded powders with a preserved but modified thermal hysteretic magnetic profile.

6.
Dalton Trans ; 50(9): 3109-3115, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33570077

RESUMO

Spin Crossover (SCO) particles at the nanometric scale provide an alternative point of view and a new perspective concerning the development of a new generation of spintronic, electronic, photonic and mechanical devices. The coexistence of the SCO phenomenon with the accompanying hysteresis loop enhances the functionality of future devices for storing and processing information. Despite all promising facts, the SCO phenomena are greatly affected by cooperativity issues resulting in a direct relation between the decrease of the size of nanopatricle and the overall decrease of cooperativity towards more gradual spin transitions. This minireview aims to summarise the synthetic techniques for the synthesis of 2-D FeII SCO particles at the nanometric scale, an underexplored area of research, highlighting the effects of the size-reduction on the magnetic properties of the corresponding nanoparticles and hopefuly showcasing the importance of studying in the context of 2D limit the SCO phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA