Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 103(6): 1056-1062, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36750145

RESUMO

Transient receptor potential canonical channels (TRPCs) are non-selective cationic channels that play a role in signal transduction, especially in G -protein-mediated signaling cascades. TRPC5 is expressed predominantly in the brain but also in the kidney. However, its role in kidney physiology and pathophysiology is controversial. Some studies have suggested that TRPC5 drives podocyte injury and proteinuria, particularly after small GTPase Rac1 activation to induce the trafficking of TRPC5 to the plasma membrane. Other studies using TRPC5 gain-of-function transgenic mice have questioned the pathogenic role of TRPC5 in podocytes. Here, we show that TRPC5 over-expression or inhibition does not ameliorate proteinuria induced by the expression of constitutively active Rac1 in podocytes. Additionally, single-cell patch-clamp studies did not detect functional TRPC5 channels in primary cultures of podocytes. Thus, we conclude that TRPC5 plays a role redundant to that of TRPC6 in podocytes and is unlikely to be a useful therapeutic target for podocytopathies.


Assuntos
Glomerulosclerose Segmentar e Focal , Proteínas Monoméricas de Ligação ao GTP , Podócitos , Camundongos , Animais , Podócitos/patologia , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , Proteinúria/patologia , Camundongos Transgênicos , Fatores de Transcrição/metabolismo
2.
Sci Rep ; 12(1): 10766, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750783

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2) regulates the activities of numerous membrane proteins, including diacylglycerol(DAG)-activated TRPC3/6/7 channels. Although PIP2 binding is known to support DAG-activated TRP channel activity, its binding site remains unknown. We screened for PIP2 binding sites within TRPC6 channels through extensive mutagenesis. Using voltage-sensitive phosphatase (DrVSP), we found that Arg437 and Lys442, located in the channel's pre-S1 domain/shoulder, are crucial for interaction with PIP2. To gain structural insights, we conducted computer protein-ligand docking simulations with the pre-S1 domain/shoulder of TRPC6 channels. Further, the functional significance of PIP2 binding to the pre-S1 shoulder was assessed for receptor-operated channel functions, cross-reactivity to DAG activation, and the kinetic model simulation. These results revealed that basic residues in the pre-S1 domain/shoulder play a central role in the regulation of PIP2-dependent gating. In addition, neutralizing mutation of K771 in the distal TRP box reversed the effect of PIP2 depletion from inhibiting to potentiating channel activity. A similar effect was seen in TRPV1 channels, which suggests that TRPC6 possesses a common but robust polarity switch mediating the PIP2-dependent effect. Overall, these mutagenesis studies reveal functional and structural insights for how basic residues and channel segments in TRP channels are controlled through phosphoinositides recognition.


Assuntos
Fosfatidilinositol 4,5-Difosfato , Monoéster Fosfórico Hidrolases , Sítios de Ligação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Domínios Proteicos , Canal de Cátion TRPC6/metabolismo
3.
Am J Physiol Renal Physiol ; 321(6): F715-F739, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34632812

RESUMO

Kidneys, one of the vital organs in our body, are responsible for maintaining whole body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, and urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the subregions. Recent developments in labeling, tracing, and imaging techniques have enabled us to mark, monitor, and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we summarize different cell types, specific markers that are uniquely associated with those cell types, and their distribution in the kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for the assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in cell type-specific markers. Thus, the term "cell marker" might be imprecise and suboptimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to researchers, we acknowledge that the list may not be necessarily exhaustive.


Assuntos
Biomarcadores/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Animais , Humanos , Rim/patologia , Rim/fisiopatologia , Nefropatias/diagnóstico , Nefropatias/fisiopatologia , Nefropatias/terapia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Valor Preditivo dos Testes , Prognóstico
4.
J Gen Physiol ; 152(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32167537

RESUMO

Voltage-sensing phosphatases (VSP) consist of a membrane-spanning voltage sensor domain and a cytoplasmic region that has enzymatic activity toward phosphoinositides (PIs). VSP enzyme activity is regulated by membrane potential, and its activation leads to rapid and reversible alteration of cellular PIP levels. These properties enable VSPs to be used as a tool for studying the effects of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) binding to ion channels and transporters. For example, by applying simple changes in the membrane potential, Danio rerio VSP (Dr-VSP) has been used effectively to manipulate PI(4,5)P2 in mammalian cells with few, if any, side effects. In the present study, we report an enhanced version of Dr-VSP as an improved molecular tool for depleting PI(4,5)P2 from cultured mammalian cells. We modified Dr-VSP in two ways. Its voltage-dependent phosphatase activity was enhanced by introducing an aromatic residue at the position of Leu-223 within a membrane-interacting region of the phosphatase domain called the hydrophobic spine. In addition, selective plasma membrane targeting of Dr-VSP was facilitated by fusion with the N-terminal region of Ciona intestinalis VSP. This modified Dr-VSP (CiDr-VSPmChe L223F, or what we call eVSP) induced more drastic voltage-evoked changes in PI(4,5)P2 levels, using the activities of Kir2.1, KCNQ2/3, and TRPC6 channels as functional readouts. eVSP is thus an improved molecular tool for evaluating the PI(4,5)P2 sensitivity of ion channels in living cells.


Assuntos
Potenciais da Membrana/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Células HEK293 , Humanos , Mamíferos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canal de Cátion TRPC6/metabolismo
5.
J Am Soc Nephrol ; 30(9): 1587-1603, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266820

RESUMO

BACKGROUND: TRPC6 is a nonselective cation channel, and mutations of this gene are associated with FSGS. These mutations are associated with TRPC6 current amplitude amplification and/or delay of the channel inactivation (gain-of-function phenotype). However, the mechanism of the gain-of-function in TRPC6 activity has not yet been clearly solved. METHODS: We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes. RESULTS: Both lobes of CaM helped induce CDI. Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton. CONCLUSIONS: The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC's coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Citoesqueleto/ultraestrutura , Glomerulosclerose Segmentar e Focal/genética , Canal de Cátion TRPC6/genética , Actinas/ultraestrutura , Animais , Sítios de Ligação , Calmodulina/genética , Mutação com Ganho de Função , Glomerulosclerose Segmentar e Focal/metabolismo , Células HEK293 , Humanos , Camundongos , Fenótipo , Podócitos , Domínios Proteicos , Canal de Cátion TRPC6/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA