Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 4(9): eaau0920, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30255151

RESUMO

With the development of the Internet of Things (IoT), the demand for thin and wearable electronic devices is growing quickly. The essential part of the IoT is communication between devices, which requires radio-frequency (RF) antennas. Metals are widely used for antennas; however, their bulkiness limits the fabrication of thin, lightweight, and flexible antennas. Recently, nanomaterials such as graphene, carbon nanotubes, and conductive polymers came into play. However, poor conductivity limits their use. We show RF devices for wireless communication based on metallic two-dimensional (2D) titanium carbide (MXene) prepared by a single-step spray coating. We fabricated a ~100-nm-thick translucent MXene antenna with a reflection coefficient of less than -10 dB. By increasing the antenna thickness to 8 µm, we achieved a reflection coefficient of -65 dB. We also fabricated a 1-µm-thick MXene RF identification device tag reaching a reading distance of 8 m at 860 MHz. Our finding shows that 2D titanium carbide MXene operates below the skin depth of copper or other metals as well as offers an opportunity to produce transparent antennas. Being the most conductive, as well as water-dispersible, among solution-processed 2D materials, MXenes open new avenues for manufacturing various classes of RF and other portable, flexible, and wearable electronic devices.

2.
Nature ; 560(7720): 622-627, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30127406

RESUMO

Ordering of ferroelectric polarization1 and its trajectory in response to an electric field2 are essential for the operation of non-volatile memories3, transducers4 and electro-optic devices5. However, for voltage control of capacitance and frequency agility in telecommunication devices, domain walls have long been thought to be a hindrance because they lead to high dielectric loss and hysteresis in the device response to an applied electric field6. To avoid these effects, tunable dielectrics are often operated under piezoelectric resonance conditions, relying on operation well above the ferroelectric Curie temperature7, where tunability is compromised. Therefore, there is an unavoidable trade-off between the requirements of high tunability and low loss in tunable dielectric devices, which leads to severe limitations on their figure of merit. Here we show that domain structure can in fact be exploited to obtain ultralow loss and exceptional frequency selectivity without piezoelectric resonance. We use intrinsically tunable materials with properties that are defined not only by their chemical composition, but also by the proximity and accessibility of thermodynamically predicted strain-induced, ferroelectric domain-wall variants8. The resulting gigahertz microwave tunability and dielectric loss are better than those of the best film devices by one to two orders of magnitude and comparable to those of bulk single crystals. The measured quality factors exceed the theoretically predicted zero-field intrinsic limit owing to domain-wall fluctuations, rather than field-induced piezoelectric oscillations, which are usually associated with resonance. Resonant frequency tuning across the entire L, S and C microwave bands (1-8 gigahertz) is achieved in an individual device-a range about 100 times larger than that of the best intrinsically tunable material. These results point to a rich phase space of possible nanometre-scale domain structures that can be used to surmount current limitations, and demonstrate a promising strategy for obtaining ultrahigh frequency agility and low-loss microwave devices.

3.
J Chem Phys ; 136(18): 184703, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22583305

RESUMO

In this paper, we investigate the emission characteristics of a molecule placed in the gap of a nanoparticle dimer configuration. The emission process is described in terms of a local field enhancement factor and the overall quantum yield of the system. The molecule is represented as a dipolar source, with fixed length and fed by a constant current. We first describe the coupled dimer-molecule system and compare these results to a single sphere-molecule system. Next, the effect of dimer size is investigated by changing the radius of the nanoparticles. We find that when the radius increases, a saturation effect occurs that trends towards the case of a radiating dipole between two flat interfaces, which we refer to as a parallel plate waveguide geometry. An analytical solution for the parallel plate waveguide geometry is presented and compared to the results for the spherical dimer configuration. We use this approximation as a reference solution, and also, it provides useful guidelines to understand the physical mechanism behind the energy transfer between the molecule and the dimer. We find that the emission intensity undergoes a quenching effect only when the inter-nanoparticle gap distance of the dimer is very small, meaning that strong coupling prevails over energy engaged in the heating process unless the molecule is extremely close to the metal surface.

4.
Opt Express ; 20(1): A141-56, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22379681

RESUMO

In this paper, we show how light absorption in a plasmonic grating nanosurface can be calculated by means of a simple, analytical model based on a transmission line equivalent circuit. The nanosurface is a one-dimensional grating etched into a silver metal film covered by a silicon slab. The transmission line model is specified for both transverse electric and transverse magnetic polarizations of the incident light, and it incorporates the effect of the plasmonic modes diffracted by the ridges of the grating. Under the assumption that the adjacent ridges are weakly interacting in terms of diffracted waves, we show that the approximate, closed form expression for the reflection coefficient at the air-silicon interface can be used to evaluate light absorption of the solar cell. The weak-coupling assumption is valid if the grating structure is not closely packed and the excitation direction is close to normal incidence. Also, we show the utility of the circuit theory for understanding how the peaks in the absorption coefficient are related to the resonances of the equivalent transmission model and how this can help in designing more efficient structures.


Assuntos
Desenho Assistido por Computador , Eletrônica/instrumentação , Modelos Teóricos , Nanoestruturas/química , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Absorção , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
5.
Chem Commun (Camb) ; 47(13): 3814-6, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21321706

RESUMO

In this work, geometrical optimizations of Ag disc on pillar (DOP) hybrid plasmonic nanostructures were conducted and allowed us to achieve reproducible average enhancement factors of 1 × 10(9) and greater.

6.
Nanotechnology ; 21(41): 415701, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20834119

RESUMO

Optical spectra and atomic force microscopy (AFM) images of individually selected spheres and mechanically assembled silica-coated gold nanosphere pairs were recorded. The shell served as a means of rigid control of the minimum spacing between the metal cores. The spectra of the assembled spheres were simulated using classical electrodynamics. The observed spectra resulted in superior characterization of the particle assembly geometry, relative to the AFM data. Experimental investigations regarding less-rigid polyvinylpyrrolidone (PVP) sphere coatings were also performed and some comparisons were made.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA