Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metab Brain Dis ; 38(2): 507-518, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36447062

RESUMO

Niemann-Pick C disease (NPC) is an autosomal recessive genetic disorder resulting from mutation in one of two cholesterol transport genes: NPC1 or NPC2, causing accumulation of unesterified cholesterol, together with glycosphingolipids, within the endosomal/lysosomal compartment of cells. The result is a severe disease in both multiple peripheral organs and the central nervous system, causing neurodegeneration and early death. However, the pathophysiological mechanisms of NPC1 remain poorly understood. Recent studies have shown that the primary lysosomal defect found in fibroblasts from NPC1 patients is accompanied by a deregulation of mitochondrial organization and function. There is currently no cure for NPC1, but recently the potential of ß-cyclodextrin (ß-CD) for the treatment of the disease was discovered, which resulted in the redistribution of cholesterol from subcellular compartments to the circulation and increased longevity in an animal model of NPC1. Considering the above, the present work evaluated the in vitro therapeutic potential of ß-CD to reduce cholesterol in fibroblasts from NPC1 patients. ß-CD was used in its free and nanoparticulate form. We also evaluated the ß-CD potential to restore mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidants N-Acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). Besides, we evaluated oxidative and nitrative stress parameters in NPC1 patients. We showed that oxidative and nitrative stress could contribute to the pathophysiology of NPC1, as the levels of lipoperoxidation and the nitrite and nitrate levels were increased in these patients when compared to healthy individuals, as well as DNA damage. The nanoparticles containing ß-CD reduced the cholesterol accumulated in the NPC1 fibroblasts. This result was potentiated by the concomitant use of the nanoparticles with the antioxidants NAC and CoQ10 compared to those presented by healthy individuals cells ́. In addition, treatments combining ß-CD nanoparticles and antioxidants could reduce mitochondrial oxidative stress, demonstrating advantages compared to free ß-CD. The results obtained are promising regarding the combined use of ß-CD loaded nanoparticles and antioxidants in the treatment of NPC1 disease.


Assuntos
Doença de Niemann-Pick Tipo C , beta-Ciclodextrinas , Animais , Doença de Niemann-Pick Tipo C/genética , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , beta-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/uso terapêutico , beta-Ciclodextrinas/metabolismo , Oxirredução , Mitocôndrias/metabolismo , Colesterol/metabolismo
2.
Small ; 18(7): e2106583, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35018723

RESUMO

The interaction between metal and metal oxides at the nanoscale is of uttermost importance in several fields, thus its enhancement is highly desirable. In catalysis, the performance of the nanoparticles is dependent on a wide range of properties, including its shape that is commonly considered stable during the catalytic reaction. In this study, highly reducible CeO2-x nanoparticles are synthesized aiming to provide Cu/CeO2-x nanoparticles, which are classically active catalysts for the CO oxidation reaction. It is observed that the Cu nanoparticles shape changes during reduction treatment (prior to the CO oxidation reaction) from a nearly spherical 3D to a planar 2D shape, then enhances the Cu-CeO2-x interaction. The spread of the Cu nanoparticles over the CeO2-x surface during the reduction treatment occurs due to the minimization of the total system energy. The shape change is accompanied by migration of O atoms from CeO2 surface to the border of the Cu nanoparticles and the change from the Cu0 to Cu+1 state. The spreading of the Cu nanoparticles influences on the reactivity results toward the CO oxidation reaction since it changes the local atomic order around Cu atoms. The results show a timely contribution for enhancing the interaction between metal and metal oxide.


Assuntos
Cério , Nanopartículas , Catálise , Oxirredução , Óxidos
3.
Biomed Pharmacother ; 146: 112249, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34972632

RESUMO

The emergence of many new viruses in recent times has resulted in a significant scientific challenge for discovering drugs and vaccines that effectively treat and prevent viral diseases. Nanotechnology has opened doors to prevent the spread of several diseases, including those caused by viruses. Polymer-hybrid nanodevices are a class of nanotechnology platforms for biomedical applications that present synergistic properties among their components, with improved performance compared to conventional forms of therapy. Considering the growing interest in this emerging field and the promising technological advantages of polymer-hybrid nanodevices, this work presents the current status of these systems in the context of prevention and treatment of viral diseases. A brief description of the different types of polymer-hybrid nanodevices highlighting some peculiar characteristics such as their composition, biodistribution, delivery of antigens, and overall immune responses in systemic tissues are discussed. Finally, the work presents the future trends for new nanotechnological hybrid materials based on polymers and perspectives for clinical use.


Assuntos
Antivirais/administração & dosagem , Nanopartículas/administração & dosagem , Nanotecnologia/tendências , Polímeros/administração & dosagem , Viroses/prevenção & controle , Animais , Antivirais/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/fisiologia , Nanopartículas/metabolismo , Polímeros/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia , Viroses/metabolismo
4.
Metab Brain Dis ; 36(5): 1015-1027, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33620579

RESUMO

Maple syrup urine disease (MSUD) is a genetic disorder that leads the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine, valine and metabolites. The symptomatology includes psychomotor delay and mental retardation. MSUD therapy comprises a lifelong protein strict diet with low BCAA levels and is well established that high concentrations of Leu and/or its ketoacid are associated with neurological symptoms. Recently, it was demonstrated that the phenylbutyrate (PBA) have the ability to decrease BCAA concentrations. This work aimed the development of lipid-based nanoparticles loaded with PBA, capable of targeting to the central nervous system in order to verify its action mechanisms on oxidative stress and cell death in brain of rats subjected to a MSUD chronic model. PBA-loaded nanoparticles treatment was effective in significantly decreasing BCAA concentration in plasma and Leu in the cerebral cortex of MSUD animals. Furthermore, PBA modulate the activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes, as well as preventing the oxidative damage to lipid membranes and proteins. PBA was also able to decrease the glial fibrillary acidic protein concentrations and partially decreased the reactive species production and caspase-3 activity in MSUD rats. Taken together, the data indicate that the PBA-loaded nanoparticles could be an efficient adjuvant in the MSUD therapy, protecting against oxidative brain damage and neuroinflammation.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Córtex Cerebral/efeitos dos fármacos , Doença da Urina de Xarope de Bordo/metabolismo , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenilbutiratos/administração & dosagem , Animais , Catalase/metabolismo , Córtex Cerebral/metabolismo , Glutationa Peroxidase/metabolismo , Doença da Urina de Xarope de Bordo/sangue , Doença da Urina de Xarope de Bordo/induzido quimicamente , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
5.
Drug Dev Ind Pharm ; 47(1): 83-91, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33289591

RESUMO

OBJECTIVE: This study developed a novel child-friendly drug delivery system for pediatric HIV treatment: a liquid, taste-masked, and solvent-free monoolein-based nanoparticles formulation containing indinavir (0.1%). SIGNIFICANCE: Adherence to antiretroviral therapy by pediatric patients is difficult because of the lack of dosage forms adequate for children. METHODS: Monoolein-based nanoparticles were developed. The particle size, zeta potential, pH, drug content, small angle X-ray scattering, stability, in vitro drug release profile, biocompatibility, toxicity, and taste-masking properties were evaluated. RESULTS: Monoolein-based formulations containing indinavir had nanosized particles with 155 ± 7 nm, unimodal particle size distribution, and polydispersity index of 0.16 ± 0.03. The zeta potential was negative (-31.3 ± 0.3 mV) and pH was neutral (7.78 ± 0.01). A 96% drug incorporation efficiency was achieved, and the indinavir concentration remained constant for 30 days. Polarized light microscopy revealed isotropic characteristics. Transmission electron microscopy images showed spherical shaped morphology. Small-angle X-ray scattering displayed a form factor broad peak. Indinavir had a sustained release from the nanoparticles. The system was nonirritant and was able to mask drug bitter taste. CONCLUSIONS: Monoolein-based nanoparticles represent a suitable therapeutic strategy for antiretroviral treatment with the potential to reduce the frequency of drug administration and promote pediatric adherence.


Assuntos
Glicerídeos/química , Indinavir , Nanopartículas , Criança , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Tamanho da Partícula , Paladar
6.
J Inherit Metab Dis ; 43(3): 586-601, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943253

RESUMO

ß-Cyclodextrin (ß-CD) is being considered a promising therapy for Niemann-Pick C (NPC) disease because of its ability to mobilise the entrapped cholesterol from lysosomes, however, a major limitation is its inability to cross the blood-brain barrier (BBB) and address the central nervous system (CNS) manifestations of the disease. Considering this, we aimed to design nanoparticles able to cross the BBB and deliver ß-CD into the CNS lysosomes. The physicochemical characteristics of ß-CD-loaded nanoparticles were evaluated by dynamic light scattering, small-angle X-ray scattering, and cryogenic transmission electron microscopy. The in vitro analyses were performed with NPC dermal fibroblasts and the ß-CD-loaded nanoparticles were tracked in vivo. The nanoparticles showed a mean diameter around 120 nm with a disordered bicontinuous inner structure. The nanoparticles did not cause decrease in cell viability, impairment in the antioxidant enzymes activity, damage to biomolecules or release of reactive species in NPC dermal fibroblasts; also, they did not induce genotoxicity or alter the mitochondrial function in healthy fibroblasts. The ß-CD-loaded nanoparticles were taken up by lysosomes reducing the cholesterol accumulated in NPC fibroblasts and reached the CNS of mice more intensely than other organs, demonstrating advantages compared to the free ß-CD. The results demonstrated the potential of the ß-CD-loaded nanoparticles in reducing the brain impairment of NPC.


Assuntos
Colesterol/metabolismo , Nanopartículas/administração & dosagem , Doença de Niemann-Pick Tipo C/tratamento farmacológico , beta-Ciclodextrinas/administração & dosagem , Animais , Transporte Biológico , Estudos de Casos e Controles , Criança , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Doença de Niemann-Pick Tipo C/metabolismo , beta-Ciclodextrinas/farmacologia
7.
Nanomedicine ; 24: 102121, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31672601

RESUMO

Cutaneous leishmaniasis (CL) is a neglected parasitic disease conventionally treated by multiple injections with systemically toxic drugs. Aiming at a more acceptable therapy, we developed lipid-core nanocapsules (LNCs) entrapping the potent antileishmanial chalcone (CH8) for topical application. Rhodamine-labeled LNC (Rho-LNC-CH8) was produced for imaging studies. LNC-CH8 and Rho-LNC-CH8 had narrow size distributions (polydispersity index <0.10), with similar mean sizes (~180 nm) by dynamic light scattering. In vitro, Rho-LNC-CH8 was rapidly internalized by extracellular Leishmania amazonensis parasites macrophages in less than 15 min. LNC-CH8 activated macrophage oxidative mechanisms more efficiently than CH8, and was more selectively toxic against the intracellular parasites. In vivo, topically applied Rho-LNC-CH8 efficiently permeated mouse skin. In L. amazonensis-infected mice, LNC-CH8 reduced the parasite load by 86% after three weeks of daily topical treatment, while free CH8 was ineffective. In conclusion, LNC-CH8 has strong potential as a novel topical formulation for CL treatment.


Assuntos
Antiprotozoários , Leishmaniose Cutânea/tratamento farmacológico , Lipídeos , Nanoestruturas , Administração Tópica , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Cápsulas , Feminino , Leishmania/metabolismo , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/patologia , Lipídeos/química , Lipídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Nanoestruturas/uso terapêutico
8.
Colloids Surf B Biointerfaces ; 177: 204-210, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30743067

RESUMO

Dispersed systems of bicontinuous cubic phases, called cubosomes, show a drug release rate faster than those obtained using other liquid-crystalline phases. To minimize side effects associated with the accelerated release of incorporated drugs, compounds may be added in the dispersions to produce systems of slow initial release and then fast release only in the desired action region. This paper addresses the addition of 10.0% (w/w) of decyl betainate chloride (DBC), a cleavable surfactant, into phytantriol/Pluronic-based dispersions to generate lamellar-to-cubic-to-hexagonal phase transitions. Small-angle X-ray scattering (SAXS) was used to analyze the mesophases obtained with the addition of DBC and pH variation. Transmission electron microscopy (TEM) images confirmed the presence of niosomes after the addition of DBC. The niosomes formed in these systems are pH-responsive with lamellar-to-hexosomes transitions at pH ≥ 7.4. The system investigated herein is gastro-resistant presenting potential therapeutic role for controlled release of drugs in neutral or alkaline environments of the organism.


Assuntos
Álcoois Graxos/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Tamanho da Partícula , Transição de Fase , Propriedades de Superfície , Tensoativos/química
9.
Eur J Pharm Biopharm ; 133: 96-103, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30315863

RESUMO

Lysosomal Storage Disorders (LSDs) are characterized by an abnormal accumulation of substrates within the lysosome and comprise more than 50 genetic disorders with a frequency of 1:5000 live births. Nanotechnology may be a promising way to circumvent the drawbacks of the current therapies for lysosomal diseases. The blood circulation time and bioavailability of the enzymes or drugs could be improved by inserting them in nanocarriers, which could decrease and/or avoid the need of frequent intravenous infusions along with the minimization or elimination of associated immunogenic responses. Considering the exposed, we aimed to build monoolein-based nanoparticles stabilized by polysorbate 80 as a smart platform able to reach the central nervous system (CNS) to deliver drugs or enzymes inside lysosomes. We developed and characterized the nanoparticles by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (Cryo-TEM). The nanoparticles showed a diameter of 115 nm, which is compatible with in vivo application. The SAXS patterns of the formulations displayed a single broad correlation peak that was fitted to the Teubner-Strey model confirming that disordered bicontinuous structures were obtained. Cryo-TEM images corroborated this finding and showed nanoparticles with size values that are similar to those determined by DLS. Furthermore, the nanoparticles did not present cytotoxicity when they were incubated with human fibroblasts, and demonstrated hemolytic activity proportional to the negative control, proving to be safe for parenteral administration. Through the use of a fluorescent dye to track the nanoparticles inside the cell, we demonstrated that they reached lysosomes after 1 h of treatment. More interestingly, the fluorescent dye was detected in the CNS of mice just after 3 h of treatment. The nanoparticles show great potential to improve the treatment of LSDs with brain impairment, acting as a smart platform to targeted delivery of drugs or enzymes.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Glicerídeos/química , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Nanopartículas/química , Animais , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lisossomos/efeitos dos fármacos , Masculino , Camundongos , Nanotecnologia/métodos , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
10.
Cell Mol Neurobiol ; 38(8): 1505-1516, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30302628

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder caused by disfunction of the ABCD1 gene, which encodes a peroxisomal protein responsible for the transport of the very long-chain fatty acids from the cytosol into the peroxisome, to undergo ß-oxidation. The mainly accumulated saturated fatty acids are hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in tissues and body fluids. This peroxisomal disorder occurs in at least 1 out of 20,000 births. Considering that pathophysiology of this disease is not well characterized yet, and glial cells are widely used in studies of protective mechanisms against neuronal oxidative stress, we investigated oxidative damages and inflammatory effects of vesicles containing lecithin and C26:0, as well as the protection conferred by N-acetyl-L-cysteine (NAC), trolox (TRO), and rosuvastatin (RSV) was assessed. It was verified that glial cells exposed to C26:0 presented oxidative DNA damage (measured by comet assay and endonuclease III repair enzyme), enzymatic oxidative imbalance (high catalase activity), nitrative stress [increased nitric oxide (NO) levels], inflammation [high Interleukin-1beta (IL-1ß) levels], and induced lipid peroxidation (increased isoprostane levels) compared to native glial cells without C26:0 exposure. Furthermore, NAC, TRO, and RSV were capable to mitigate some damages caused by the C26:0 in glial cells. The present work yields experimental evidence that inflammation, oxidative, and nitrative stress may be induced by hexacosanoic acid, the main accumulated metabolite in X-ALD, and that antioxidants might be considered as an adjuvant therapy for this severe neurometabolic disease.


Assuntos
Acetilcisteína/farmacologia , Cromanos/farmacologia , Ácidos Graxos/farmacologia , Inflamação/patologia , Neuroglia/patologia , Estresse Nitrosativo , Estresse Oxidativo , Rosuvastatina Cálcica/farmacologia , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Dano ao DNA , Interleucina-1beta/metabolismo , Isoprostanos/metabolismo , Neuroglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Nitratos/metabolismo , Nitritos/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
11.
J Mater Chem B ; 6(30): 4920-4928, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32255066

RESUMO

Inorganic nanoparticles that mimic the activity of enzymes are promising systems for biomedical applications. However, they cannot distinguish between healthy and damaged tissues, which could cause undesired effects. Natural enzymes avoid this drawback via activation triggered by specific biochemical events in the body. Inspired by this strategy, we proposed an artificial cerium-based proenzyme system that could be activated to a superoxide dismutase-like form using H2O2 as the trigger. To achieve this goal, an innovative and easy strategy to synthesize Ce(OH)3 nanoparticles as artificial proenzymes was developed using a lyotropic liquid crystal composed of phytantriol, which was essential to maintain their stability at physiological pH. The transmission electron microscopy measurements showed that the Ce(OH)3 nanoparticles were as small as 2 nm. The nanoparticles were fitted into the tiny aqueous channels of the liquid crystal matrix, which presented a Pn3m space group. X-ray absorption near edge structure measurements were used to determine the Ce(iii) fraction of the proenzyme-like nanoparticles, which was around 85%. The Ce(iii) fraction dramatically dropped to around 5% after contact with H2O2 because of the conversion of Ce(OH)3 to CeO(2-x) nanoparticles. The CeO(2-x) nanoparticles showed superoxide dismutase-like activity in contrast to the inactive Ce(OH)3 form. The proof of concept presented in this work opens up new possibilities for using nanoparticles as artificial proenzymes that are activated by a biochemical trigger in vivo.

12.
J Nanosci Nanotechnol ; 15(1): 827-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328447

RESUMO

Lipid-core polymeric nanocapsules are innovative devices that present distinguished characteristics due to the presence of sorbitan monostearate into the oily-core. This component acted as low-molecular-mass organic gelator for the oil (medium chain triglycerides). The organogel-structured core influenced the polymeric wall characteristics disfavoring the formation of more stable polymer crystallites. This probably occurred due to interpenetration of these pseudo-phases. Sorbitan monostearate dispersed in the oily-core was also able to interact by non-covalent bonding with the drugs increasing the drug loading capacity more than 40 times compared to conventional nanocapsules. We demonstrated that the drug-models quercetin and quercetin pentaacetate stabilized the organogel network probably due to interactions of the drug molecules with the sorbitan monostearate headgroups by hydrogen bonding.


Assuntos
Hexoses/química , Lipídeos/química , Nanocápsulas/química , Tamanho da Partícula , Quercetina/química , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
J Nanosci Nanotechnol ; 12(3): 2874-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755137

RESUMO

Lipid-core nanocapsules (LNC) are vesicular nanocarriers prepared by solvent displacement. LNC have been previously prepared using medium-chain triglyceride and sorbitan monostearate as liquid and solid lipophilic components dispersed in the core, surrounded by poly(epsilon-caprolactone) (PCL). Our objective was to investigate the antioxidant activity of LNC containing quercetin (QUE), a radical scavenger, prepared with octyl methoxycinnamate and sorbitan monostearate as lipophilic core components and PCL as the polymer wall. We selected Saccharomyces cerevisae cells as the proposed biological model. QUE-LNC presented z-average diameter of 212 nm, pH of 5.51 and zeta potential of -11 mV. Multiple light scattering analysis (TurbiscanLab) showed a photon path length of 172 microm. Furthermore, a validated turbidimetric study determined that the density of particles in suspension was 1.66 x 10(13). DSC analysis showed that the melting temperature of PCL shifted to lower values when in contact with octyl methoxycinnamate indicating a molecular interaction. After 1 h (7 h), the QUE-LNC formulation and QUE solution incubated with H2O2 showed cell survival of 84.4% (87.7%) and 65.6% (7.3%), respectively. After 35 h of incubation, cell survival was 31.7% and 0.9%, respectively. The QUE-LNC showed sustained antioxidant activity and potential as a nanostructured material to formulate final products.


Assuntos
Antioxidantes/farmacologia , Lipídeos/química , Nanocápsulas , Quercetina/farmacologia , Varredura Diferencial de Calorimetria , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Saccharomyces cerevisiae/efeitos dos fármacos , Espectrofotometria Ultravioleta
14.
J Nanosci Nanotechnol ; 11(3): 2398-406, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21449399

RESUMO

The nanoencapsulation of capsaicinoids (capsaicin and dihydrocapsaicin) was proposed in this work as a strategy to control their release due to the reservoir characteristics of the nanocapsules. This reservoir property could prolong the topical analgesic effect and reduce the burning sensation and skin irritation caused by the capsaicinoids. The nanocapsules were physicochemically characterized and presented z-average diameter of 153 +/- 7 (PDI < 0.2) and zeta potential of +9.62 +/- 1.48 mV. The pH of the aqueous nanoparticle suspension was 5.72 +/- 0.10, which is suitable for cutaneous application. The total capsaicinoids content was 0.5 mg mL(-1) (64% of capsaicin and 33% of dihydrocapsaicin) and their encapsulation efficiencies were close to 100%. The formulation was stable over 90 days. The in vitro release profiles demonstrated that the release of capsaicin and dihydrocapsaicin was prolonged by means of nanoencapsulation. Moreover, comparing the half-life values, it was observed that the polymeric wall significantly affected the release rates for both capsaicinoids. According to Fick's first law, capsaicin presented higher flux (5.6 +/- 0.1 (x10(-4)) mg cm(-2) h(-1)) than that of dihydrocapsaicin (2.1 +/- 0.2 (x 10(-4)) mg cm(-2) h(-1)), which was probably related to its higher gradient concentration. Drug diffusion and polymer relaxation were responsible for the capsaicinoids release from the nanocapsules, which fitted the monoexponential mathematical model. This innovative formulation was designed considering its potential action of prolonging the analgesic effect of the capsaicionoids on the skin.


Assuntos
Capsaicina/química , Modelos Químicos , Nanocápsulas/química , Polímeros/química , Capsaicina/administração & dosagem , Simulação por Computador , Difusão , Composição de Medicamentos , Teste de Materiais
15.
J Nanosci Nanotechnol ; 9(8): 4933-41, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19928171

RESUMO

We hypothesized that the control of the poly(epsilon-caprolactone) (PCL) nanosphere sizes could be achieved by controlling the size of the primary emulsion droplets considering a combined effect of the ethanol volume fraction in the organic phase and the stirring rate of the primary emulsion. In this way, we prepared poly(epsilon-caprolactone) (PCL) nanospheres in order to evaluate the effect of those variables on the hydrodynamic diameters of the nanoparticles by a 32 factorial design. The size distribution curves considering intensity, volume and number of particles showed monomodal distributions for all formulations. The nanoparticle diameters (z-average) decreased from 423 to 249 nm with the increase in both the ethanol volume fraction from 0.0 to 0.4 and the stirring rate from 9500 to 17500 rpm. The polydispersity indexes ranged from 0.076 to 0.176. A statistical model based on the regression coefficients calculated by the factorial design analysis was proposed in order to predict the nanoparticle diameters. Using the predictive model, the results showed high similarity between the experimental and the predicted nanosphere diameters, validating the model for loaded PCL nanospheres. The backscattering profiles of the primary emulsions prepared using different proportions of ethyl acetate and ethanol showed a reduction in the size of the droplets from 1.659 microm to 0.706 microm with the increase in the ethanol volume fraction and the stirring rate. Ethanol decreased the restoring stress of the droplets as a consequence of the reduction in the interface tension. The decrease in the nanoparticle mean size was a consequence of the droplet size reduction in the primary emulsion.

16.
J Biomed Nanotechnol ; 5(3): 240-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20055005

RESUMO

The objective of this work was to verify if hydrophilic gels containing benzophenone-3 loaded nanocapsules (HG-NCBZ3) could improve the sunscreen in vitro effectiveness against UVA radiation and its photostability compared to a conventional hydrogel containing the free sunscreen (HG-BZ3). In parallel, the immune response of the nanostructured system was evaluated by mouse ear swelling test and the local lymph node assay. The nanocapsules were prepared by interfacial deposition of poly(epsilon-caprolactone) and characterized in terms of particle size, polydispersity index, zeta potential, drug content and encapsulation efficiency. HG-NCBZ3 UV scans showed higher absorption intensity values than HG-NCplacebo, prepared using unloaded nanocapsules. Films of the gels were irradiated with UVA light and the BZ3 recovery was evaluated by HPLC. BZ3 recovery decreased from 100% to 29% for HG-BZ3 and to 56% for HG-NCBZ3 after 13 h. After wavelength scans within 13 h, the relative areas under the curves (AUC) decreased from 1.00 to 0.62 for HG-BZ3 and remained constant for HG-NCBZ3. Sensitization assay showed that stimulation indexes lower than 3 for all the hydrogel samples. Formulations did not induce increases higher than 10% in ear swelling, indicating that the hydrogels did not cause cutaneous sensitization in mice. The nanoencapsulation improved both the photostability and the effectiveness of BZ3 compared to the non-encapsulated sunscreen and the topical application of free and nanoencapsulated BZ3 did not produce significant allergy response in mice.


Assuntos
Portadores de Fármacos/química , Toxidermias/imunologia , Nanoestruturas/química , Protetores Solares/administração & dosagem , Animais , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/efeitos da radiação , Toxidermias/diagnóstico , Luz , Teste de Materiais , Camundongos , Nanoestruturas/efeitos adversos , Nanoestruturas/efeitos da radiação , Pós , Protetores Solares/efeitos adversos
17.
J Biomed Nanotechnol ; 5(1): 130-40, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20055116

RESUMO

Based on the structure of polymeric nanocapsules containing a lipid-dispersed core composed of caprylic/capric trygliceride (CCT) and sorbitan monostearate (SM), we hypothesized that varying the core component concentrations the drug release kinetic could be modulated. Our objective was also to determine the parameters which were responsible for controlling the drug release kinetics. The nanocapsules were prepared by interfacial deposition of poly(epsilon-caprolactone). Interfacial hydrolysis of indomethacin ester (IndOEt) was used to simulate a sink condition of release. Mathematical modeling showed that the IndOEt half-lives increased (198 to 378 and 263 to 508 min) with the increase in the core lipid concentrations, and that the release mechanism was the anomalous transport. By increasing the SM concentration, the diameters were constant (around 250 nm) and the surface areas increased (from 1.06 x 10(4) to 1.51 x 10(4) cm2 x ml(-1)), while by increasing the CCT concentration, the diameters increased (215 to 391 nm) and the surface areas reduced (1.46 x 10(4) to 1.06 x 10(4) cm2 x ml(-1)). The presence of SM increased the viscosity of CCT and the IndOEt apparent permeability decreased from 4.26 x 10(-7) to 2.54 x 10(-7) cm x s(-1), while for CCT series, the apparent permeability was constant around 3.0 x 10(-7) cm x s(-1). A mathematical correlation was established and the IndOEt apparent permeability can be estimated by the SM concentration. In conclusion, varying the CCT and SM concentrations the IndOEt release was controlled by the nanocapsule surface area and by the viscosity of the core, respectively.


Assuntos
Preparações de Ação Retardada/química , Lipídeos/química , Modelos Químicos , Nanopartículas/química , Nanopartículas/ultraestrutura , Simulação por Computador , Difusão , Teste de Materiais , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Viscosidade
18.
Int J Pharm ; 345(1-2): 70-80, 2007 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-17604922

RESUMO

In this work, we aimed to evaluate the influence of the proportions of poly(epsilon-caprolactone) (PCL) in the poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) blended microparticles on the drug release profiles of drug models and to determine the drug release mechanism. Diclofenac and indomethacin used as drug models showed encapsulation efficiencies close to 85%. The average diameters (122-273microm) and the specific surface areas (26-120m(2)g(-1)) of the microparticles were dependent on the PCL concentration in the blends. Differential scanning calorimetry (DSC) analyses showed that the microparticle preparation process influenced the thermal behavior of PHBHV, as well as the glass transition temperature of PHBHV increased with the presence of indomethacin. The release profiles, described by a biexponential equation, showed sustained phase half-lives varying from 131 to 912min (diclofenac) and from 502 to 6300min (indomethacin) depending on the decrease of the PCL concentration. The product between the diffusion coefficient and the drug solubility in the matrix (DC(s,m)), which was proportional to the PCL concentration, was calculated by fitting the release data to the Baker-Lonsdale equation. The mechanism of release was mainly controlled by the drug diffusion and the drug release profiles were controlled by varying the PCL concentration systematically in the blended PHBHV/PCL microparticles.


Assuntos
Poliésteres/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Varredura Diferencial de Calorimetria , Cápsulas , Diclofenaco/administração & dosagem , Diclofenaco/química , Composição de Medicamentos , Meia-Vida , Indometacina/administração & dosagem , Indometacina/química , Cinética , Microscopia Eletrônica de Varredura , Modelos Químicos , Modelos Estatísticos , Tamanho da Partícula , Porosidade , Solubilidade , Espectrofotometria Infravermelho , Propriedades de Superfície , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA