Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(4): e0196474, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698456

RESUMO

Upon their translocation into the mitochondrial matrix, the N-terminal pre-sequence of nuclear-encoded proteins undergoes cleavage by mitochondrial processing peptidases. Some proteins require more than a single processing step, which involves several peptidases. Down-regulation of the putative Trypanosoma brucei mitochondrial intermediate peptidase (MIP) homolog by RNAi renders the cells unable to grow after 48 hours of induction. Ablation of MIP results in the accumulation of the precursor of the trypanosomatid-specific trCOIV protein, the largest nuclear-encoded subunit of the cytochrome c oxidase complex in this flagellate. However, the trCOIV precursor of the same size accumulates also in trypanosomes in which either alpha or beta subunits of the mitochondrial processing peptidase (MPP) have been depleted. Using a chimeric protein that consists of the N-terminal sequence of a putative subunit of respiratory complex I fused to a yellow fluorescent protein, we assessed the accumulation of the precursor protein in trypanosomes, in which RNAi was induced against the alpha or beta subunits of MPP or MIP. The observed accumulation of precursors indicates MIP depletion affects the activity of the cannonical MPP, or at least one of its subunits.


Assuntos
Metaloendopeptidases/metabolismo , Mitocôndrias/enzimologia , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Regulação para Baixo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/classificação , Metaloendopeptidases/genética , Microscopia de Fluorescência , Filogenia , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Especificidade por Substrato , Peptidase de Processamento Mitocondrial
2.
Genome Biol Evol ; 5(5): 860-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23563972

RESUMO

Mitochondrial processing peptidase (MPP) consists of α and ß subunits that catalyze the cleavage of N-terminal mitochondrial-targeting sequences (N-MTSs) and deliver preproteins to the mitochondria. In plants, both MPP subunits are associated with the respiratory complex bc1, which has been proposed to represent an ancestral form. Subsequent duplication of MPP subunits resulted in separate sets of genes encoding soluble MPP in the matrix and core proteins (cp1 and cp2) of the membrane-embedded bc1 complex. As only α-MPP was duplicated in Neurospora, its single ß-MPP functions in both MPP and bc1 complexes. Herein, we investigated the MPP/core protein family and N-MTSs in the kinetoplastid Trypanosoma brucei, which is often considered one of the most ancient eukaryotes. Analysis of N-MTSs predicted in 336 mitochondrial proteins showed that trypanosomal N-MTSs were comparable with N-MTSs from other organisms. N-MTS cleavage is mediated by a standard heterodimeric MPP, which is present in the matrix of procyclic and bloodstream trypanosomes, and its expression is essential for the parasite. Distinct Genes encode cp1 and cp2, and in the bloodstream forms the expression of cp1 is downregulated along with the bc1 complex. Phylogenetic analysis revealed that all eukaryotic lineages include members with a Neurospora-type MPP/core protein family, whereas cp1 evolved independently in metazoans, some fungi and kinetoplastids. Evolution of cp1 allowed the independent regulation of respiration and protein import, which is essential for the procyclic and bloodstream forms of T. brucei. These results indicate that T. brucei possesses a highly derived MPP/core protein family that likely evolved in response to its complex life cycle and does not appear to have an ancient character proposed earlier for this eukaryote.


Assuntos
Eucariotos/genética , Metaloendopeptidases/genética , Proteínas Mitocondriais/genética , Trypanosoma brucei brucei/genética , Sequência de Aminoácidos , Sequência de Bases , Evolução Molecular , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Filogenia , Peptidase de Processamento Mitocondrial
3.
FEBS J ; 277(2): 383-93, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19968861

RESUMO

Nfs-like proteins have cysteine desulfurase (CysD) activity, which removes sulfur (S) from cysteine, and provides S for iron-sulfur cluster assembly and the thiolation of tRNAs. These proteins also have selenocysteine lyase activity in vitro, and cleave selenocysteine into alanine and elemental selenium (Se). It was shown previously that the Nfs-like protein called Nfs from the parasitic protist Trypanosoma brucei is a genuine CysD. A second Nfs-like protein is encoded in the nuclear genome of T. brucei. We called this protein selenocysteine lyase (SCL) because phylogenetic analysis reveals that it is monophyletic with known eukaryotic selenocysteine lyases. The Nfs protein is located in the mitochondrion, whereas the SCL protein seems to be present in the nucleus and cytoplasm. Unexpectedly, downregulation of either Nfs or SCL protein leads to a dramatic decrease in both CysD and selenocysteine lyase activities concurrently in the mitochondrion and the cytosolic fractions. Because loss of Nfs causes a growth phenotype but loss of SCL does not, we propose that Nfs can fully complement SCL, whereas SCL can only partially replace Nfs under our growth conditions.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Liases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Animais , Liases de Carbono-Enxofre/genética , Compartimento Celular , Citosol/enzimologia , Genes de Protozoários , Liases/antagonistas & inibidores , Liases/genética , Mitocôndrias/enzimologia , Filogenia , Proteínas de Protozoários/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/genética
4.
J Biol Chem ; 284(36): 23947-53, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19574216

RESUMO

Kinetoplastids encode a single nuclear tryptophanyl tRNA that contains a CCA anticodon able to decode the UGG codons used in cytoplasmic protein synthesis but cannot decode the mitochondrial UGA codons. Following mitochondrial import, this problem is circumvented in Trypanosoma brucei by specifically editing the tRNA(Trp) anticodon to UCA, which can now decode the predominant mitochondrial UGA tryptophan codons. This tRNA also undergoes an unusual thiolation at position 33 of the anticodon loop, the only known modification at U33 in any tRNA. In other organisms, tRNA thiolation is mediated by the cysteine desulfurase, Nfs1 (IscS). However, T. brucei encodes two Nfs homologues, one cytoplasmic and the other mitochondrial. We show by a combination of RNA interference and Northern and Western analyses that the mitochondria-targeted TbNfs, and not TbNfs-like protein, is essential for thiolation of both cytosolic and mitochondrial tRNAs. Given the exclusive mitochondrial localization of TbNfs, how it mediates thiolation in the cytoplasm remains unclear. Furthermore, thiolation specifically affects thiolated tRNA stability in the cytoplasm but more surprisingly acts as a negative determinant for the essential C to U editing in T. brucei. This provides a first line of evidence for mitochondrial C to U editing regulation in this system.


Assuntos
Edição de RNA/fisiologia , Estabilidade de RNA/fisiologia , RNA de Protozoário/metabolismo , RNA de Transferência de Triptofano/metabolismo , RNA/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA/genética , RNA Mitocondrial , RNA de Protozoário/genética , RNA de Transferência de Triptofano/genética , Trypanosoma brucei brucei/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA