RESUMO
Natural Killer (NK) cells, integral components of the innate immune system, play a crucial role in the protection against intracellular threats. Their cytotoxic power requires that activation is tightly controlled, and in this, they take a unique position within the immune system. Rather than depending on the engagement of a single activating receptor, their activation involves a delicate balance between inhibitory and activating signals mediated through an array of surface molecules. Only when this cumulative balance surpasses a specific threshold do NK cells initiate their activity. Remarkably, the activation threshold of NK cells remains robust even when cells express vastly different repertoires of inhibitory and activating receptors. These threshold values seem to be influenced by NK cell interactions with their environment during development and after release from the bone marrow. Understanding how NK cells integrate this intricate pattern of stimuli is an ongoing area of research, particularly relevant for cellular therapies seeking to harness the anti-cancer potential of these cells by modifying surface receptor expression. In this review, we will explore some of the current dogmas regarding NK cell activation and discuss recent literature addressing advances in our understanding of this field.
Assuntos
Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Animais , Ativação Linfocitária/imunologia , Transdução de SinaisRESUMO
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Assuntos
Homeostase , Humanos , Animais , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Doenças Metabólicas/imunologia , Infecções/imunologiaRESUMO
Drug administration in preclinical rodent models is essential for research and the development of novel therapies. Compassionate administration methods have been developed, but these are mostly incompatible with water-insoluble drugs such as tamoxifen or do not allow for precise timing or dosing of the drugs. For more than two decades, tamoxifen has been administered by oral gavage or injection to CreERT2-loxP gene-modified mouse models to spatiotemporally control gene expression, with the numbers of such inducible models steadily increasing in recent years. Animal-friendly procedures for accurately administering tamoxifen or other water-insoluble drugs would, therefore, have an important impact on animal welfare. On the basis of a previously published micropipette feeding protocol, we developed palatable formulations to encourage voluntary consumption of tamoxifen. We evaluated the acceptance of the new formulations by mice during training and treatment and assessed the efficacy of tamoxifen-mediated induction of CreERT2-loxP-dependent reporter genes. Both sweetened milk and syrup-based formulations encouraged mice to consume tamoxifen voluntarily, but only sweetened milk formulations were statistically noninferior to oral gavage or intraperitoneal injections in inducing CreERT2-mediated gene expression. Serum concentrations of tamoxifen metabolites, quantified using an in-house-developed cell assay, confirmed the lower efficacy of syrup- as compared to sweetened milk-based formulations. We found dosing with a micropipette to be more accurate than oral gavage or injection, with the added advantage that the method requires little training for the experimenter. The new palatable solutions encourage voluntary consumption of tamoxifen without loss of efficacy compared to oral gavage or injections and thus represent a refined administration method.
Assuntos
Tamoxifeno , Animais , Tamoxifeno/administração & dosagem , Camundongos , Feminino , Masculino , Camundongos Endogâmicos C57BLRESUMO
Viral infection makes us feel sick as the immune system alters systemic metabolism to better fight the pathogen. The extent of these changes is relative to the severity of disease. Whether blood glucose is subject to infection-induced modulation is mostly unknown. Here we show that strong, nonlethal infection restricts systemic glucose availability, which promotes the antiviral type I interferon (IFN-I) response. Following viral infection, we find that IFNγ produced by γδ T cells stimulates pancreatic ß cells to increase glucose-induced insulin release. Subsequently, hyperinsulinemia lessens hepatic glucose output. Glucose restriction enhances IFN-I production by curtailing lactate-mediated inhibition of IRF3 and NF-κB signaling. Induced hyperglycemia constrained IFN-I production and increased mortality upon infection. Our findings identify glucose restriction as a physiological mechanism to bring the body into a heightened state of responsiveness to viral pathogens. This immune-endocrine circuit is disrupted in hyperglycemia, possibly explaining why patients with diabetes are more susceptible to viral infection.
Assuntos
Glicemia , Imunidade Inata , Interferon gama , Animais , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos , Glicemia/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Insulina/metabolismo , Insulina/imunologia , Camundongos Knockout , Hiperglicemia/imunologia , Fator Regulador 3 de Interferon/metabolismo , NF-kappa B/metabolismo , Humanos , Fígado/imunologia , Fígado/virologia , Fígado/metabolismo , MasculinoRESUMO
OBJECTIVE: To conduct scientometric studies on PhD ("Doctor of Philosophy") theses (i.e., doctoral theses), researchers should be able to access the theses. We aimed to explore how to obtain a list and full text of the defended PhD theses from medical schools in Croatia over 30 years (from the beginning of 1992 to the end of 2021). METHODS: We tried to obtain information from the Croatian Bureau of Statistics, the National and University Library in Zagreb (NSK), universities, medical schools and online repositories. RESULTS: We could not find a single list (source) of all PhD theses. Based on 4 different sources (website of the University of Zagreb and Medical School in Rijeka; school administrator from Split; library catalog from Osijek), we gathered information that from the beginning of 1992 to the end of 2021, there were 2955 PhD theses defended at medical schools in Croatia - 357 in Osijek, 550 in Rijeka, 337 in Split and 1711 in Zagreb. In May 2022, the online Croatian Digital Dissertations Repository contained 631 (22%) of full-text theses in Portable Document Format (PDF). University of Zagreb School of Medicine has its own repository that holds the full text of 834 (49%) of their PhD theses. One of the three PhD programs of the University of Split School of Medicine, namely Translational Research in Biomedicine (TRIBE), published full texts of all PhD theses defended at that program on its website. NSK held 2650 (90%) of the theses in a printed version. CONCLUSION: It was extremely challenging to access the list and full texts of doctoral theses defended in Croatia. Making PhD theses publicly available would ensure transparency and enable analyses that should improve scientific policy.
Assuntos
Dissertações Acadêmicas como Assunto , Faculdades de Medicina , Croácia , Humanos , Estudos Retrospectivos , BibliometriaRESUMO
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly common complication of obesity, affecting over a quarter of the global adult population. A key event in the pathophysiology of MASLD is the development of metabolic-associated steatohepatitis (MASH), which greatly increases the chances of developing cirrhosis and hepatocellular carcinoma. The underlying cause of MASH is multifactorial, but accumulating evidence indicates that the inflammatory process in the hepatic microenvironment typically follows a pattern that can be roughly divided into three stages: (1) Detection of hepatocyte stress by tissue-resident immune cells including γδ T cells and CD4-CD8- double-negative T cells, followed by their secretion of pro-inflammatory mediators, most notably IL-17A. (2) Recruitment of pro-inflammatory cells, mostly of the myeloid lineage, and initiation of inflammation through secretion of effector-type cytokines such as TNF, TGF-ß, and IL-1ß. (3) Escalation of the inflammatory response by recruitment of lymphocytes including Th17, CD8 T, and B cells leading to chronic inflammation, hepatic stellate cell activation, and fibrosis. Here we will discuss these three stages and how they are consecutively linked like falling domino tiles to the pathophysiology of MASH. Moreover, we will highlight the clinical potential of inflammation as a biomarker and therapeutic target for the treatment of MASLD.
Assuntos
Fígado Gorduroso , Neoplasias Hepáticas , Doenças Metabólicas , Adulto , Humanos , Linfócitos B , Inflamação , Microambiente TumoralRESUMO
Metabolic-associated fatty liver disease (MAFLD) is a spectrum of clinical manifestations ranging from benign steatosis to cirrhosis. A key event in the pathophysiology of MAFLD is the development of nonalcoholic steatohepatitis (NASH), which can potentially lead to fibrosis and hepatocellular carcinoma, but the triggers of MAFLD-associated inflammation are not well understood. We have observed that lipid accumulation in hepatocytes induces expression of ligands specific to the activating immune receptor NKG2D. Tissue-resident innate-like T cells, most notably γδ T cells, are activated through NKG2D and secrete IL-17A. IL-17A licenses hepatocytes to produce chemokines that recruit proinflammatory cells into the liver, which causes NASH and fibrosis. NKG2D-deficient mice did not develop fibrosis in dietary models of NASH and had a decreased incidence of hepatic tumors. The frequency of IL-17A+ γδ T cells in the blood of patients with MAFLD correlated directly with liver pathology. Our findings identify a key molecular mechanism through which stressed hepatocytes trigger inflammation in the context of MAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamação/patologia , Interleucina-17/metabolismo , Cirrose Hepática/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Linfócitos T/metabolismoRESUMO
Natural killer (NK) cells play an important role in the early defense against tumors and virally infected cells. Their function is thought to be controlled by the balance between activating and inhibitory receptors, which often compete for the same ligands. Several activating receptors expressed on virtually all NK cells lack an inhibitory partner, most notably CD16, NCR1 and NKG2D. We therefore hypothesized that a signal through at least one of these receptors is always required for full NK cell activation. We generated animals lacking all three receptors (TKO) and analyzed their NK cells. In vitro, TKO NK cells did not show reduced ability to kill tumor targets but displayed hyperresponsiveness to NK1.1 stimulation. In vivo, TKO animals had a minor reduction in their ability to control non-hematopoietic tumors and cytomegalovirus infection, which was the result of reduced NK cell activity. Together, our findings show that activating NK cell receptors without an inhibitory partner do not provide a 'master' signal but are integrated in the cumulative balance of activating and inhibitory signals. Their activity is controlled through regulation of the responsiveness and expression of other activating receptors. Our findings may be important for future development of NK cell-based cancer immunotherapy.
Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias , Animais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Células Matadoras Naturais/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Neoplasias/metabolismoRESUMO
In their aspiration to become healthy, people are known to follow extreme diets. However, the acute impact on organs regulating systemic metabolism is not well characterized. Here, we investigated the acute impact of six extreme diets on the liver in mice. Most diets did not lead to clear pathology after short-term feeding. However, two weeks of feeding with a high protein diet (HPD) resulted in an acute increase of liver enzymes in the blood, indicative of liver damage. Histology revealed the formation of necrotic lesions in this organ which persisted for several weeks. Flow cytometric analysis of hepatic immune cell populations showed that HPD feeding induced activation of macrophages and neutrophils. Neutralization of the pro-inflammatory cytokine IL-1ß or depletion of macrophages with clodronate-loaded liposomes or with genetic models did not ameliorate liver necrosis. In contrast, the depletion of neutrophils prevented HPD-induced hepatic inflammation. After prolonged feeding, HPD-feeding was associated with a strong increase of the cytokines IL-10 and IL-27, suggesting that anti-inflammatory mediators are activated to prevent nutrient-overload-induced damage to the liver. In summary, whereas our data indicates that most extreme diets do not have a major impact on the liver within two weeks, diets with a very high protein content may lead to severe, acute hepatic damage and should therefore be avoided.
RESUMO
Exercise has many beneficial effects for our body, but can become detrimental at high intensity, especially for our immune system. Little is known about the underlying mechanism of impaired immune functionality under conditions of intense physical strain. Freedivers, people who dive to high depths on a single breath, perform extreme exercise under anaerobic conditions. In this study, we investigated the impact of freediving on the cytotoxic arm of the immune system. At rest, elite freedivers did not display changes in their immunological profile compared to non-diving controls. In contrast, after a freedive, granzyme B and IL-2 production were reduced, whereas IFNγ and TNF secretion were increased by cytotoxic immune cells. Using in vitro models mimicking freedive conditions, we could show that hypoxia in combination with stress hyperglycemia had a negative impact on Granzyme B secretion, whereas IL-2 production was inhibited by stress hormones. Our findings suggest that in response to extreme exercise, cytotoxic immune cells transiently change their functional profile to limit tissue damage.
Assuntos
Hipóxia , Interleucina-2 , Anaerobiose , Granzimas , Humanos , LinfócitosRESUMO
Type 2 diabetes (T2D) causes an increased risk of morbidity and mortality in response to viral infection. T2D is characterized by hyperglycemia and is typically associated with insulin resistance and compensatory hyperinsulinemia. CD8 T cells express the insulin receptor, and previously, we have shown that insulin is able to directly modulate effector CD8 T-cell function. We therefore hypothesized that memory CD8 T-cell responsiveness in the context of T2D is negatively impacted by hyperinsulinemia or hyperglycemia. Using a mouse model for T2D, we could show that memory CD8 T-cell function was significantly reduced in response to rechallenge by viral infection or with melanoma cells. Basal insulin injection of mice increased GLUT-1 expression and glucose uptake in memory CD8 T-cell precursors early after infection, which was prevented when these cells were deficient for the insulin receptor. However, neither insulin injection nor insulin receptor deficiency resulted in a difference in metabolism, memory formation, cytokine production, or recall responses of memory CD8 T cells compared with controls. Importantly, in context of obesity, insulin receptor deficiency on CD8 T cells did not affect the functional capacity of memory CD8 T cells. In contrast, we could show in vitro and in vivo that hyperglycemia significantly impairs the antiviral capacity of memory CD8 T cells. Our findings indicate that obesity impairs the memory CD8 T-cell response against viral infection and cancer through the detrimental effects of hyperglycemia rather than hyperinsulinemia.
Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Hiperinsulinismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus Tipo 2/complicações , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Memória Imunológica , Insulina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Receptor de Insulina/metabolismoRESUMO
The immune and endocrine systems collectively control homeostasis in the body. The endocrine system ensures that values of essential factors and nutrients such as glucose, electrolytes and vitamins are maintained within threshold values. The immune system resolves local disruptions in tissue homeostasis, caused by pathogens or malfunctioning cells. The immediate goals of these two systems do not always align. The immune system benefits from optimal access to nutrients for itself and restriction of nutrient availability to all other organs to limit pathogen replication. The endocrine system aims to ensure optimal nutrient access for all organs, limited only by the nutrients stores that the body has available. The actual state of homeostatic parameters such as blood glucose levels represents a careful balance based on regulatory signals from the immune and endocrine systems. This state is not static but continuously adjusted in response to changes in the current metabolic needs of the body, the amount of resources it has available and the level of threats it encounters. This balance is maintained by the ability of the immune and endocrine systems to interact and co-regulate systemic metabolism. In context of metabolic disease, this system is disrupted, which impairs functionality of both systems. The failure of the endocrine system to retain levels of nutrients such as glucose within threshold values impairs functionality of the immune system. In addition, metabolic stress of organs in context of obesity is perceived by the immune system as a disruption in local homeostasis, which it tries to resolve by the excretion of factors which further disrupt normal metabolic control. In this chapter, we will discuss how the immune and endocrine systems interact under homeostatic conditions and during infection with a focus on blood glucose regulation. In addition, we will discuss how this system fails in the context of metabolic disease.
Assuntos
Glicemia/imunologia , Glicemia/metabolismo , Sistema Endócrino/imunologia , Sistema Endócrino/metabolismo , Infecções/imunologia , Infecções/metabolismo , HumanosRESUMO
NKG2D is a danger sensor expressed on different subsets of innate and adaptive lymphocytes. Despite its established role as a potent activator of the immune system, NKG2D-driven regulation of CD4+ T helper (Th) cell-mediated immunity remains unclear. In this study, we demonstrate that NKG2D modulates Th1 and proinflammatory T-bet+ Th17 cell effector functions in vitro and in vivo. In particular, NKG2D promotes higher production of proinflammatory cytokines by Th1 and T-bet+ Th17 cells and reinforces their transcription of type 1 signature genes, including Tbx21. Conditional deletion of NKG2D in T cells impairs the ability of antigen-specific CD4+ T cells to promote inflammation in vivo during antigen-induced arthritis and experimental autoimmune encephalomyelitis, indicating that NKG2D is an important target for the amelioration of Th1- and Th17-mediated chronic inflammatory diseases.
Assuntos
Artrite Experimental/imunologia , Encefalomielite Autoimune Experimental/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Artrite Experimental/genética , Artrite Experimental/patologia , Citocinas/genética , Citocinas/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Células Th1/patologia , Células Th17/patologiaRESUMO
The memory CD8 T-cell pool must select for clones that bind immunodominant epitopes with high affinity to efficiently counter reinfection. At the same time, it must retain a level of clonal diversity to allow recognition of pathogens with mutated epitopes. How the level of diversity within the memory pool is controlled is unclear, especially in the context of a selective drive for antigen affinity. We find that preservation of clones that bind the activating antigen with low affinity depends on expression of the transcription factor Eomes in the first days after antigen encounter. Eomes is induced at low activating signal strength and directly drives transcription of the prosurvival protein Bcl-2. At higher signal intensity, T-bet is induced which suppresses Bcl-2 and causes a relative survival advantage for cells of low affinity. Clones activated with high-affinity antigen form memory largely independent of Eomes and have a proliferative advantage over clones that bind the same antigen with low affinity. This causes high-affinity clones to prevail in the memory pool, despite their relative survival deficit. Genetic or therapeutic targeting of the Eomes/Bcl-2 axis reduces the clonal diversity of the memory pool, which diminishes its ability to respond to pathogens carrying mutations in immunodominant epitopes. Thus, we demonstrate on a molecular level how sufficient diversity of the memory pool is established in an environment of affinity-based selection.
Assuntos
Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Proteínas com Domínio T/imunologia , Animais , Variação Antigênica/imunologia , Sobrevivência Celular/imunologia , Células Cultivadas , Seleção Clonal Mediada por Antígeno/genética , Seleção Clonal Mediada por Antígeno/imunologia , Regulação da Expressão Gênica/imunologia , Ativação Linfocitária , Camundongos , Células Precursoras de Linfócitos T/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Proteínas com Domínio T/genéticaRESUMO
NK cells are innate lymphocytes responsible for lysis of pathogen-infected and transformed cells. One of the major activating receptors required for target cell recognition is the NK group 2D (NKG2D) receptor. Numerous reports show the necessity of NKG2D for effective tumor immune surveillance. Further studies identified NKG2D as a key element allowing tumor immune escape. We here use a mouse model with restricted deletion of NKG2D in mature NKp46+ cells (NKG2DΔNK ). NKG2DΔNK NK cells develop normally, have an unaltered IFN-γ production but kill tumor cell lines expressing NKG2D ligands (NKG2DLs) less efficiently. However, upon long-term stimulation with IL-2, NKG2D-deficient NK cells show increased levels of the lytic molecule perforin. Thus, our findings demonstrate a dual function of NKG2D for NK cell cytotoxicity; while NKG2D is a crucial trigger for cytotoxicity of tumor cells expressing activating ligands it is also capable to limit perforin production in IL-2 activated NK cells.
Assuntos
Interleucina-2/farmacologia , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Animais , Linhagem Celular Tumoral , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/genética , Interferon gama/genética , Interferon gama/imunologia , Células Matadoras Naturais/patologia , Camundongos , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Proteínas Citotóxicas Formadoras de Poros/genéticaRESUMO
The immune and endocrine systems ensure two vital functions in the body. The immune system protects us from lethal pathogens, whereas the endocrine system ensures proper metabolic function of peripheral organs by regulating systemic homeostasis. These two systems were long thought to operate independently. The immune system uses cytokines and immune receptors, whereas the endocrine system uses hormones to regulate metabolism. However, recent findings show that the immune and endocrine systems closely interact, especially regarding regulation of glucose metabolism. In response to pathogen encounter, cytokines modify responsiveness of peripheral organs to endocrine signals, resulting in altered levels of blood hormones such as insulin, which promotes the ability of the body to fight infection. Here we provide an overview of recent literature describing various mechanisms, which the immune system utilizes to modify endocrine regulation of systemic metabolism. Moreover, we will describe how these immune-endocrine interactions derail in the context of obesity. From a clinical perspective we will elaborate how infection and obesity aggravate the development of metabolic diseases such as diabetes mellitus type 2 in humans. In summary, this review provides a comprehensive overview of immune-induced changes in systemic metabolism following infection, with a focus on regulation of glucose metabolism.
Assuntos
Sistema Endócrino/metabolismo , Sistema Imunitário/metabolismo , Infecções/imunologia , Obesidade/imunologia , Animais , Citocinas/metabolismo , Glucose/metabolismo , Homeostase , Humanos , Resistência à InsulinaRESUMO
Effector and memory CD8 T cells have an intrinsic difference in the way they must approach antigen; effector cells need to address the pathogen at hand and therefore favor outgrowth of only high-affinity clones. In contrast, the memory pool benefits from greater clonal diversity to recognize and eliminate pathogens with mutations in their immunogenic epitopes. Effector and memory fates are ultimately the result of the same three signals that control T cell activation; T cell receptor (TCR) engagement together with co-stimulation and cytokines. Great progress has been made in our understanding of the transcriptional programs that drive effector or memory differentiation. However, how these two different programs result from the same initial cues is still a matter of debate. An emerging image is that not only the classical three signals determine T cell differentiation, but also the ability of cells to access these signals relative to that of other activated clones. Inter-clonal competition is therefore not only a selective force, but also a mediator of CD8 T cell fate. How this is regulated on a transcriptional level, especially in the context of a selective "hunger game" based on antigen-affinity in which only cells of high-affinity are supposed to survive, is still poorly defined. In this review, we discuss recent literature that illustrates how antigen-affinity dependent inter-clonal competition shapes effector and memory populations in an environment of antigen affinity-driven selection. We argue that fine-tuning of TCR signal intensity presents an attractive target for regulating the scope of CD8 T cell vaccines.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Ativação Linfocitária , Transdução de Sinais/imunologia , Transcrição Gênica/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologiaRESUMO
The activation of natural killer (NK) cells depends on a change in the balance of signals from inhibitory and activating receptors. The activation threshold values of NK cells are thought to be set by engagement of inhibitory receptors during development. Here, we found that the activating receptor NKG2D specifically set the activation threshold for the activating receptor NCR1 through a process that required the adaptor DAP12. As a result, NKGD2-deficient (Klrk1-/-) mice controlled tumors and cytomegalovirus infection better than wild-type controls through the NCR1-induced production of the cytokine IFN-γ. Expression of NKG2D before the immature NK cell stage increased expression of the adaptor CD3ζ. Reduced expression of CD3ζ in Klrk1-/- mice was associated with enhanced signal transduction through NCR1, and CD3ζ deficiency resulted in hyper-responsiveness to stimulation via NCR1. Thus, an activating receptor developmentally set the activity of another activating receptor on NK cells and determined NK cell reactivity to cellular threats.
Assuntos
Antígenos Ly/imunologia , Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Animais , Camundongos , Camundongos KnockoutRESUMO
Pro-inflammatory cytokines of a T helper-1-signature are known to promote insulin resistance (IR) in obesity, but the physiological role of this mechanism is unclear. It is also unknown whether and how viral infection induces loss of glycemic control in subjects at risk for developing diabetes mellitus type 2 (DM2). We have found in mice and humans that viral infection caused short-term systemic IR. Virally-induced interferon-γ (IFN-γ) directly targeted skeletal muscle to downregulate the insulin receptor but did not cause loss of glycemic control because of a compensatory increase of insulin production. Hyperinsulinemia enhanced antiviral immunity through direct stimulation of CD8+ effector T cell function. In pre-diabetic mice with hepatic IR caused by diet-induced obesity, infection resulted in loss of glycemic control. Thus, upon pathogen encounter, the immune system transiently reduces insulin sensitivity of skeletal muscle to induce hyperinsulinemia and promote antiviral immunity, which derails to glucose intolerance in pre-diabetic obese subjects. VIDEO ABSTRACT.