Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 345: 123539, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341066

RESUMO

Plasticizers such as phthalate esters (PAEs) are commonly used in various consumer and industrial products. This widespread use raises valid concerns regarding their ubiquity in the environment and potential negative impacts. The present study investigates the distribution of eight common plasticizers in the largest European lagoon (Curonian Lagoon) located in the SE Baltic Sea. The concentration levels of plasticizers in the water column, containing both the dissolved and particulate-bound phases, and in sediments were evaluated to reveal seasonal patterns in distribution and potential effects on the lagoon ecosystem. A total of 24 water samples and 48 sediment samples were collected across all four seasons from the two dominant sedimentary areas within the lagoon. The average concentration of total PAEs in the water column ranged from 1 to 21 µg L-1, whereas sediment concentration varied from 5.0 to 250 ng g-1. The distribution of plasticizers was influenced by the patterns in hydrodynamics and water circulation within the lagoon. The confined south-central area contained a higher amount of PAEs in sediments, accounting for most of the lagoon's plasticizer accumulation. More than 7 tons of plasticizers are stored in the 5 upper centimetres of sediment, with over 3 tons persisting for more than five years. Di(2-ethylhexyl) phthalate (DEHP), Diisobutyl phthalate (DiBP), and Dibutyl phthalate (DnBP) were the most abundant PAE congeners, with DEHP posing the highest risk quotient to algae, based on water column concentration. Several other congeners demonstrated medium to high-risk levels for organisms living in the lagoon.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Plastificantes/análise , Estações do Ano , Ecossistema , Rios , Ésteres , Dibutilftalato , Água , China
2.
Mar Pollut Bull ; 200: 116084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309175

RESUMO

In temperate coastal areas, the resident population often increases during holidays. As a result, this can lead to higher wastewater production and release of pollutants. The connection between micropollutants such as plasticizers and hormones with the changing resident population along the Baltic Sea coast has yet to be thoroughly studied. Therefore, we have monitored the wastewater quality and specific micropollutants before and after treatment at wastewater treatment plants (WWTPs) at small and large seaside resorts. The findings indicate a strong link between tourism indicators and wastewater production during the summer months. The rise in different micropollutants, specifically plasticizers, during the summer demonstrates a link with tourism activity. Furthermore, we have identified a non-linear association between the tourism indicators and the total estrogenic equivalent (EEQ). Overall, this research particularly emphasizes the growing importance of wastewater quality in terms of conventional nutrient pollution and various micropollutants.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Lituânia , Plastificantes , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos
3.
Water Res ; 194: 116954, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667950

RESUMO

Since the start of synthetic fertilizer production more than a hundred years ago, the coastal ocean has been exposed to increasing nutrient loading, which has led to eutrophication and extensive algal blooms. Such hypereutrophic waters might harbor anaerobic nitrogen (N) cycling processes due to low-oxygen microniches associated with abundant organic particles, but studies on nitrate reduction in coastal pelagic environments are scarce. Here, we report on 15N isotope-labeling experiments, metagenome, and RT-qPCR data from a large hypereutrophic lagoon indicating that dissimilatory nitrate reduction to ammonium (DNRA) and denitrification were active processes, even though the bulk water was fully oxygenated (> 224 µM O2). DNRA in the bottom water corresponded to 83% of whole-ecosystem DNRA (water + sediment), while denitrification was predominant in the sediment. Microbial taxa important for DNRA according to the metagenomic data were dominated by Bacteroidetes (genus Parabacteroides) and Proteobacteria (genus Wolinella), while denitrification was mainly associated with proteobacterial genera Pseudomonas, Achromobacter, and Brucella. The metagenomic and microscopy data suggest that these anaerobic processes were likely occurring in low-oxygen microniches related to extensive growth of filamentous cyanobacteria, including diazotrophic Dolichospermum and non-diazotrophic Planktothrix. By summing the total nitrate fluxes through DNRA and denitrification, it results that DNRA retains approximately one fifth (19%) of the fixed N that goes through the nitrate pool. This is noteworthy as DNRA represents thus a very important recycling mechanism for fixed N, which sustains algal proliferation and leads to further enhancement of eutrophication in these endangered ecosystems.


Assuntos
Compostos de Amônio , Desnitrificação , Ecossistema , Nitratos , Nitrogênio , Óxidos de Nitrogênio
4.
Front Microbiol ; 11: 610269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542710

RESUMO

Bivalves are ubiquitous filter-feeders able to alter ecosystems functions. Their impact on nitrogen (N) cycling is commonly related to their filter-feeding activity, biodeposition, and excretion. A so far understudied impact is linked to the metabolism of the associated microbiome that together with the host constitute the mussel's holobiont. Here we investigated how colonies of the invasive zebra mussel (Dreissena polymorpha) alter benthic N cycling in the shallow water sediment of the largest European lagoon (the Curonian Lagoon). A set of incubations was conducted to quantify the holobiont's impact and to quantitatively compare it with the indirect influence of the mussel on sedimentary N transformations. Zebra mussels primarily enhanced the recycling of N to the water column by releasing mineralized algal biomass in the form of ammonium and by stimulating dissimilatory nitrate reduction to ammonium (DNRA). Notably, however, not only denitrification and DNRA, but also dinitrogen (N2) fixation was measured in association with the holobiont. The diazotrophic community of the holobiont diverged substantially from that of the water column, suggesting a unique niche for N2 fixation associated with the mussels. At the densities reported in the lagoon, mussel-associated N2 fixation may account for a substantial (and so far, overlooked) source of bioavailable N. Our findings contribute to improve our understanding on the ecosystem-level impact of zebra mussel, and potentially, of its ability to adapt to and colonize oligotrophic environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA